Skip to main content
Log in

Cystatin C and/or creatinine-based estimated glomerular filtration rate for prediction of vancomycin clearance in long-stay critically ill patients with persistent inflammation, immunosuppression and catabolism syndrome (PICS): a population pharmacokinetics analysis

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Persistent inflammation, immunosuppression and catabolism syndrome (PICS) in critically ill patients are associated with unreliable creatinine (Cr)-based estimated glomerular filtration rate (eGFR) and alteration in vancomycin clearance (CL) due to ongoing muscle wasting and renal dysfunction (RD). Currently, cystatin C (Cys) is of great interest for eGFR due to its muscle independence. Patients receiving intravenous vancomycin with trough concentration monitoring after intensive care unit stay ≥ 14 days were retrospectively enrolled. Those with C-reactive protein > 30.0 mg/L, lymphocytes count < 0.80 × 109, albumin < 30 mg/L and weight loss > 10% were diagnosed with PICS. Impact of PICS on vancomycin trough achievement was analyzed. Plasma Cys and Cr levels with their eGFRs in RD were compared in patients with and without PICS. Furthermore, the performance of eGFRs in predicting vancomycin CL was quantificationally evaluated by population pharmacokinetics (PPK) analysis using the Phoenix NLME software. Of 69 enrolled patients, 32 (46.4%) were PICS. PICS was predictive of Cr-guided vancomycin supratherapeutic trough concentrations (OR = 5.26, P = 0.013). Significant elevation of Cys, not of Cr, was observed in patients with PICS suffering from RD (P = 0.022), causing substantial differences among eGFRs. Fifty-two and 17 patients were enrolled for the modeling group and validation group, respectively. A one-compartment PPK model with first-order elimination adequately described the data of 126 Ctrough. Prediction of vancomycin CL with Cys and Cr-based eGFR (CKD-EPIcys-cr) significantly reduced the interindividual variability of CL (from 75.6 to 28.5%). External validation with 34 Ctrough showed the robustness and accuracy of this model. This study showed the negative impact of PICS on Cr-guided vancomycin trough achievement. PPK model with CKD-EPIcys-cr can be used to optimize vancomycin dosage in patients with PICS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The raw data underlying the results of this article will be available on request to the corresponding authors.

References

  1. Nelson JE, Cox CE, Hope AA, Carson SS (2010) Chronic critical illness. Am J Respir Crit Care Med 182(4):446–454. https://doi.org/10.1164/rccm.201002-0210CI

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hawkins RB, Raymond SL, Stortz JA, Horiguchi H, Brakenridge SC, Gardner A, Efron PA, Bihorac A, Segal M, Moore FA, Moldawer LL (2018) Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome. Front Immunol 9:1511. https://doi.org/10.3389/fimmu.2018.01511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Darvall JN, Boonstra T, Norman J, Murphy D, Bailey M, Iwashyna TJ, Bagshaw SM, Bellomo R (2019) Persistent critical illness: baseline characteristics, intensive care course, and cause of death. Crit Care Resusc 21(2):110–118

    PubMed  Google Scholar 

  4. Stortz JA, Murphy TJ, Raymond SL, Mira JC, Ungaro R, Dirain ML, Nacionales DC, Loftus TJ, Wang Z, Ozrazgat-Baslanti T, Ghita GL, Brumback BA, Mohr AM, Bihorac A, Efron PA, Moldawer LL, Moore FA, Brakenridge SC (2018) Evidence for persistent immune suppression in patients who develop chron. Shock 49(3):249–258. https://doi.org/10.1097/shk.0000000000000981

    Article  PubMed  PubMed Central  Google Scholar 

  5. Álvarez R, López Cortés LE, Molina J, CisnerosJ Pachón JM (2016) Optimizing the clinical use of vancomycin. Antimicrob Agents Chemother 60(5):2601–2609. https://doi.org/10.1128/aac.03147-14

    Article  PubMed  PubMed Central  Google Scholar 

  6. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, HartH N, Montgomery E (2013) Acute skeletal muscle wasting in critical illness. JAMA 310(15):1591–1600. https://doi.org/10.1001/jama.2013.278481

    Article  PubMed  CAS  Google Scholar 

  7. Ravn B, Rimes-Stigare C, Bell M, Hansson M, Hansson LO, Martling CR, LarssonJ Martensson A (2019) Creatinine versus cystatin C based glomerular filtration rate in critically ill patients. J Crit Care 52:136–140. https://doi.org/10.1016/j.jcrc.2019.04.007

    Article  PubMed  CAS  Google Scholar 

  8. Kurts C, Panzer U, Anders HJ, Rees AJ (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13(10):738–753. https://doi.org/10.1038/nri3523

    Article  PubMed  CAS  Google Scholar 

  9. Roberts J, Lipman AJ (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37(3):840–851. https://doi.org/10.1097/CCM.0b013e3181961bff (quiz 859)

    Article  PubMed  CAS  Google Scholar 

  10. Carreno JJ, Kenney RM, Lomaestro B (2014) Vancomycin-associated renal dysfunction: where are we now? Pharmacotherapy 34(12):1259–1268. https://doi.org/10.1002/phar.1488

    Article  PubMed  CAS  Google Scholar 

  11. Brou NA, Jacqz-Aigrain E, Zhao W (2015) Cystatin C as a potential biomarker for dosing of renally excreted drugs. Br J Clin Pharmacol 80(1):20–27. https://doi.org/10.1111/bcp.12602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Frazee E, Rule AD, Lieske JC, Kashani KB, Barreto JN, Virk A, Kuper PJ, Dierkhising RA, Leung N (2017) Cystatin C-guided vancomycin dosing in critically ill patients: a quality improvement project. Am J Kidney Dis 69(5):658–666. https://doi.org/10.1053/j.ajkd.2016.11.016

    Article  PubMed  CAS  Google Scholar 

  13. Kondrup J, Rasmussen HH, Hamberg O, Stanga Z, Ad Hoc ESPEN Working Group (2003) Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr. 22(3):321–336. https://doi.org/10.1016/s0261-5614(02)00214-5

    Article  PubMed  Google Scholar 

  14. Nisula S, Kaukonen KM, Vaara ST, Korhonen AM (2013) Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med 39(3):420–428. https://doi.org/10.1007/s00134-012-2796-5

    Article  PubMed  Google Scholar 

  15. Kotani Y, Fujii T, Uchino S, Doi K, J S Group (2019) Modification of sequential organ failure assessment score using acute kidney injury classification. J Crit Care 51:198–203. https://doi.org/10.1016/j.jcrc.2019.02.026

    Article  PubMed  Google Scholar 

  16. Hauschild DB, Oliveira LDA, Ventura JC, Farias MS, Barbosa E, Bresolin NL, Moreno YMF (2020) Persistent inflammation, immunosuppression and catabolism syndrome (PICS) in critically ill children is associated with clinical outcomes: a prospective longitudinal study. J Hum Nutr Diet. https://doi.org/10.1111/jhn.12798

    Article  PubMed  Google Scholar 

  17. Nakamura K, Ogura K, Nakano H, Naraba H, Takahashi Y, Sonoo T, Hashimoto H, Morimura N (2020) C-reactive protein clustering to clarify persistent inflammation, immunosuppression and catabolism syndrome. Intensive Care Med 46(3):437–443. https://doi.org/10.1007/s00134-019-05851-3

    Article  PubMed  CAS  Google Scholar 

  18. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, Moldawer LL, Moore FA (2012) Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72(6):1491–1501. https://doi.org/10.1097/TA.0b013e318256e000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Rostoker G, Andrivet P, Pham I, Griuncelli M, Adnot S (2007) A modified Cockcroft-Gault formula taking into account the body surface area gives a more accurate estimation of the glomerular filtration rate. J Nephrol 20(5):576–585

    PubMed  Google Scholar 

  20. Elyasi S, Khalili H (2016) Vancomycin dosing nomograms targeting high serum trough levels in different populations: pros and cons. Eur J Clin Pharmacol 72(7):777–788. https://doi.org/10.1007/s00228-016-2063-8

    Article  PubMed  CAS  Google Scholar 

  21. Rybak M, Lomaestro B, Rotschafer JC, Moellering R Jr, Craig W, Billeter M, Dalovisio JR, Levine DP (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66(1):82–98. https://doi.org/10.2146/ajhp080434

    Article  PubMed  CAS  Google Scholar 

  22. Ye ZK, Chen YL, Chen K, Zhang XL, Du GH, He B, Li DK, Liu YN, Yang KH, Zhang YY, Zhai SD (2016) Therapeutic drug monitoring of vancomycin: a guideline of the Division of Therapeutic Drug Monitoring Chinese Pharmacological Society. J Antimicrob Chemother 71(11):3020–3025. https://doi.org/10.1093/jac/dkw254

    Article  PubMed  Google Scholar 

  23. Pfaller MA, Krogstad DJ, Granich GG, Murray PR (1984) Laboratory evaluation of five assay methods for vancomycin: bioassay, high-pressure liquid chromatography, fluorescence polarization immunoassay, radioimmunoassay, and fluorescence immunoassay. J Clin Microbiol 20(3):311–316. https://doi.org/10.1128/jcm.20.3.311-316.1984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tanaka A, Aiba T, Otsuka T, Suemaru K, Nishimiya T, Inoue T, Murase M, Kurosaki Y, Araki H (2010) Population pharmacokinetic analysis of vancomycin using serum cystatin C as a marker of renal function. Antimicrob Agents Chemother 54(2):778–782. https://doi.org/10.1128/aac.00661-09

    Article  PubMed  CAS  Google Scholar 

  25. Revilla N, Martín-Suárez A, Pérez MP, González FM, de del Mar Fernández Gatta M (2010) Vancomycin dosing assessment in intensive care unit patients based on a population pharmacokinetic/pharmacodynamic simulation. Br J Clin Pharmacol 70(2):201–212. https://doi.org/10.1111/j.1365-2125.2010.03679.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Winter ME (2010) Basic clinical pharmacokinetics, 5th edn. Lippincott Williams & Wilkins, Baltimore, pp 2–114

    Google Scholar 

  27. Rosenthal MD, Kamel AY, Rosenthal CM, Brakenridge S, Croft CA, Moore FA (2018) Chronic Critical Illness: Application of What We Know. Nutr Clin Pract 33(1):39–45. https://doi.org/10.1002/ncp.10024

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stortz JA, Mira JC, Raymond SL, Loftus TJ, Ozrazgat-Baslanti T, Wang Z, Ghita GL, Leeuwenburgh C, Segal MS, Bihorac A, Brumback BA, Mohr AM, Efron PA, Moldawer LL, Moore FA, Brakenridge SC (2018) Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients. J Trauma Acute Care Surg 84(2):342–349. https://doi.org/10.1097/ta.0000000000001758

    Article  PubMed  PubMed Central  Google Scholar 

  29. White LE, Chaudhary R, Moore LJ, Moore FA, Hassoun HT (2011) Surgical sepsis and organ crosstalk: the role of the kidney. J Surg Res 167(2):306–315. https://doi.org/10.1016/j.jss.2010.11.923

    Article  PubMed  Google Scholar 

  30. Bihorac A, Baslanti TO, Cuenca AG, Hobson CE, Ang D, Efron PA, Maier RV, Moore FA, Moldawer LL (2013) Acute kidney injury is associated with early cytokine changes after trauma. J Trauma Acute Care Surg 74(4):1005–1013. https://doi.org/10.1097/TA.0b013e31828586ec

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. da Silva Selistre L, Rech DL, de Souza V, Iwaz J, Lemoine S, Dubourg L (2019) Diagnostic performance of creatinine-based equations for estimating glomerular filtration rate in adults 65 years and older. JAMA Intern Med 179(6):796–804. https://doi.org/10.1001/jamainternmed.2019.0223

    Article  PubMed  PubMed Central  Google Scholar 

  32. Viana MV, Pantet O, Bagnoud G, Martinez A, Favre E, Charrière M, Favre D, Eckert P, Berger MM (2019) Metabolic and nutritional characteristics of long-stay critically Ill patients. J Clin Med 8(7):985. https://doi.org/10.3390/jcm8070985

    Article  PubMed Central  CAS  Google Scholar 

  33. Stevens LA, Schmid CH, Greene T, Li L, Beck GJ, Joffe MM, Froissart M, Kusek JW, Zhang YL, Coresh J, Levey AS (2009) Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int 75(6):652–660. https://doi.org/10.1038/ki.2008.638

    Article  PubMed  CAS  Google Scholar 

  34. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367(1):20–29. https://doi.org/10.1056/NEJMoa1114248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Carlier M, Dumoulin A, Janssen A, Picavet S, Vanthuyne S, Van Eynde R, Vanholder R, Delanghe J, De Schoenmakere G, De Waele JJ, Hoste EA (2015) Comparison of different equations to assess glomerular filtration in critically ill patients. Intensive Care Med 41(3):427–435. https://doi.org/10.1007/s00134-014-3641-9

    Article  PubMed  Google Scholar 

  36. Mårtensson J, Martling CR, Oldner A, Bell M (2012) Impact of sepsis on levels of plasma cystatin C in AKI and non-AKI patients. Nephrol Dial Transplant 27(2):576–581. https://doi.org/10.1093/ndt/gfr358

    Article  PubMed  CAS  Google Scholar 

  37. Ducharme MP, Slaughter RL, Edwards DJ (1994) Vancomycin pharmacokinetics in a patient population: effect of age, gender, and body weight. Ther Drug Monit 16(5):513–518. https://doi.org/10.1097/00007691-199410000-00013

    Article  PubMed  CAS  Google Scholar 

  38. Heffernan AJ, Germano A, Sime FB, Roberts JA, Kimura E (2019) Vancomycin population pharmacokinetics for adult patients with sepsis or septic shock: are current dosing regimens sufficient? Eur J Clin Pharmacol 75(9):1219–1226. https://doi.org/10.1007/s00228-019-02694-1

    Article  PubMed  CAS  Google Scholar 

  39. Morbitzer KA, Rhoney DH, Dehne KA, Jordan JD (2019) Enhanced renal clearance and impact on vancomycin pharmacokinetic parameters in patients with hemorrhagic stroke. J Intensive Care. https://doi.org/10.1186/s40560-019-0408-y

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morbitzer KA, Jordan JD, Dehne KA, Durr EA, Olm-Shipman CM, Rhoney DH (2019) Enhanced renal clearance in patients with hemorrhagic stroke. Crit Care Med 47(6):800–808. https://doi.org/10.1097/CCM.0000000000003716

    Article  PubMed  CAS  Google Scholar 

  41. Bel Kamel A, Bourguignon L, Marcos M, Ducher M, Goutelle S (2017) Is trough concentration of vancomycin predictive of the area under the curve? a clinical study in elderly patients. Ther Drug Monit 39(1):83–87. https://doi.org/10.1097/ftd.0000000000000359

    Article  PubMed  CAS  Google Scholar 

  42. Liang X, Fan Y, Yang M, Zhang J, Wu J, Yu J, Tao J, Lu G, Zhang H, Wang R, Wen X, Li H, Zhang F, Hang J, Shen L, Zhang Z, Lin Q, Fu F, Wu S, Shen B, Huang W, Chang C, Zhang H, Huang Q, Shi Y, Ren H, Yuan Q, Song X, Luo X, Zhang H (2018) A prospective multicenter clinical observational study on vancomycin efficiency and safety with therapeutic drug monitoring. Clin Infect Dis 67(suppl_2):S249–S255. https://doi.org/10.1093/cid/ciy680

    Article  PubMed  CAS  Google Scholar 

  43. Clark L, Skrupky LP, Servais R, Brummitt CF, Dilworth TJ (2019) Examining the relationship between vancomycin area under the concentration time curve and serum trough levels in adults with presumed or documented staphylococcal infections. Ther Drug Monit 41(4):483–488. https://doi.org/10.1097/ftd.0000000000000622

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, for their collaboration and the use of their facilities.

Funding

Talent development project for three-year action plan of Shanghai public health system construction (No. GWV-10.2-XD03).

Author information

Authors and Affiliations

Authors

Contributions

HQ and JL were in charge of the entire project and reviewed the manuscript. JH designed the study and wrote the manuscript. XW performed the study and wrote the manuscript. WY, CH and WZ analyzed the data and interpreted the results.

Corresponding authors

Correspondence to Jialin Liu or Hongping Qu.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Human and animal rights

The study protocol was approved by Ruijin Hospital Research Ethics Committee (No.2018-106).

Informed consent

This is a retrospective study. Vancomycin concentrations and renal biomarkers were routinely monitored in our hospital. And the use of the data has been approved by Ruijin Hospital Research Ethics Committee. So, informed consent was not applied to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wang, X., Hao, C. et al. Cystatin C and/or creatinine-based estimated glomerular filtration rate for prediction of vancomycin clearance in long-stay critically ill patients with persistent inflammation, immunosuppression and catabolism syndrome (PICS): a population pharmacokinetics analysis. Intern Emerg Med 16, 1883–1893 (2021). https://doi.org/10.1007/s11739-021-02699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-021-02699-8

Keywords

Navigation