Skip to main content
Log in

Impact of ‘synchronous’ and ‘asynchronous’ CPR modality on quality bundles and outcome in out-of-hospital cardiac arrest patients

  • EM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

During cardiopulmonary resuscitation (CPR), the need to interrupt chest compressions to provide synchronous ventilations prevents blood flow continuity, reducing the possibility to ensure high-quality CPR bundles of care and, thus, having a potentially negative impact on perfusion and patient outcome. Contemporaneous asynchronous chest compressions and ventilations may avoid these potentially negative effects. Only a few studies measured the CPR quality metrics during synchronous and asynchronous CPR modality and its relation to patient outcome. A prospective observational study was conducted on 285 consecutive adult patients with out-of-hospital cardiac arrest treated by EMS teams over a 30-month period. Ventilation rate, chest compression fraction (i.e. cardiac arrest time spent delivering uninterrupted chest compressions compared to total cardiac arrest time) and chest compression rate per minute were collected in real time by defibrillators and analysed through a dedicated software (electrical cardiac activity through the ECG, chest compression and ventilations through the transthoracic impedance) during synchronous and asynchronous CPR modalities. During asynchronous CPR modality, higher ventilation rate and chest compression fraction (p  < 0.001), and lower chest compression rate per minute (p < 0.001) were ensured, being all cited metrics more adherent to the high-quality CPR bundles. Ventilation rate provided during the whole CPR was an independent predictor for a good neurological outcome (OR 3.795, p = 0.005). Asynchronous chest compression and ventilation ensured the most adequate chest compression fraction, uninterrupted chest compression rate and ventilation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sasson C, Rogers MA, Dahl J, Kellermann AL (2010) Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 3(1):63–81. https://doi.org/10.1161/circoutcomes.109.889576

    Article  PubMed  Google Scholar 

  2. Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, Perkins GD, Soar J, Truhlar A, Wyllie J, Zideman DA (2015) European resuscitation council guidelines for resuscitation 2015: section 1. Executive summary. Resuscitation 95:1–80. https://doi.org/10.1016/j.resuscitation.2015.07.038

    Article  PubMed  Google Scholar 

  3. Neumar RW, Shuster M, Callaway CW, Gent LM, Atkins DL, Bhanji F, Brooks SC, de Caen AR, Donnino MW, Ferrer JM, Kleinman ME, Kronick SL, Lavonas EJ, Link MS, Mancini ME, Morrison LJ, O'Connor RE, Samson RA, Schexnayder SM, Singletary EM, Sinz EH, Travers AH, Wyckoff MH, Hazinski MF (2015) Part 1: executive summary: 2015 american heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132(18 Suppl 2):S315–367. https://doi.org/10.1161/cir.0000000000000252

    Article  PubMed  Google Scholar 

  4. Wik L, Olsen J-A, Persse D, Sterz F, Lozano M Jr, Brouwer MA, Westfall M, Souders CM, Travis DT, Herken UR, Lerner EB (2016) Why do some studies find that CPR fraction is not a predictor of survival? Resuscitation 104:59–62. https://doi.org/10.1016/j.resuscitation.2016.04.013

    Article  PubMed  Google Scholar 

  5. Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, Bhanji F, Abella BS, Kleinman ME, Edelson DP, Berg RA, Aufderheide TP, Menon V, Leary M (2013) Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation 128(4):417–435. https://doi.org/10.1161/CIR.0b013e31829d8654

    Article  PubMed  Google Scholar 

  6. Wik L, Kramer-Johansen J, Myklebust H, Sorebo H, Svensson L, Fellows B, Steen PA (2005) Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293(3):299–304. https://doi.org/10.1001/jama.293.3.299

    Article  CAS  PubMed  Google Scholar 

  7. Kurz MC, Prince DK, Christenson J, Carlson J, Stub D, Cheskes S, Lin S, Aziz M, Austin M, Vaillancourt C, Colvin J, Wang HE (2016) Association of advanced airway device with chest compression fraction during out-of-hospital cardiopulmonary arrest. Resuscitation 98:35–40. https://doi.org/10.1016/j.resuscitation.2015.10.011

    Article  PubMed  Google Scholar 

  8. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M (2013) Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med 369(23):2197–2206

    Article  CAS  PubMed  Google Scholar 

  9. Ristagno G, Semeraro F, Radeschi G, Pellis T, Gordini G, Ferro S, Cerchiari E (2014) The “Italian Registry of Cardiac Arrest—RIAC”, a national achievement to portrait the italian reality and to contribute to the wider European vision by “EuReCa”. Resuscitation 85(12):e193–e194. https://doi.org/10.1016/j.resuscitation.2014.09.015

    Article  PubMed  Google Scholar 

  10. Stecher FS, Olsen JA, Stickney RE, Wik L (2008) Transthoracic impedance used to evaluate performance of cardiopulmonary resuscitation during out of hospital cardiac arrest. Resuscitation 79(3):432–437. https://doi.org/10.1016/j.resuscitation.2008.08.007

    Article  PubMed  Google Scholar 

  11. Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, Bossaert LL, Brett SJ, Chamberlain D, de Caen AR, Deakin CD, Finn JC, Grasner JT, Hazinski MF, Iwami T, Koster RW, Lim SH, Ma MH, McNally BF, Morley PT, Morrison LJ, Monsieurs KG, Montgomery W, Nichol G, Okada K, Ong ME, Travers AH, Nolan JP (2015) Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Templates for out-of-hospital cardiac arrest. Resuscitation 96:328–340. https://doi.org/10.1016/j.resuscitation.2014.11.002

    Article  PubMed  Google Scholar 

  12. Ruiz J, Alonso E, Aramendi E, Kramer-Johansen J, Eftestol T, Ayala U, Gonzalez-Otero D (2013) Reliable extraction of the circulation component in the thoracic impedance measured by defibrillation pads. Resuscitation 84(10):1345–1352. https://doi.org/10.1016/j.resuscitation.2013.05.020

    Article  CAS  PubMed  Google Scholar 

  13. Nordseth T, Bergum D, Edelson DP, Olasveengen TM, Eftestol T, Wiseth R, Abella BS, Skogvoll E (2013) Clinical state transitions during advanced life support (ALS) in in-hospital cardiac arrest. Resuscitation 84(9):1238–1244. https://doi.org/10.1016/j.resuscitation.2013.04.010

    Article  PubMed  Google Scholar 

  14. Skogvoll E, Eftestol T, Gundersen K, Kvaloy JT, Kramer-Johansen J, Olasveengen TM, Steen PA (2008) Dynamics and state transitions during resuscitation in out-of-hospital cardiac arrest. Resuscitation 78(1):30–37. https://doi.org/10.1016/j.resuscitation.2008.02.015

    Article  PubMed  Google Scholar 

  15. Kramer-Johansen J, Edelson DP, Losert H, Kohler K, Abella BS (2007) Uniform reporting of measured quality of cardiopulmonary resuscitation (CPR). Resuscitation 74(3):406–417. https://doi.org/10.1016/j.resuscitation.2007.01.024

    Article  PubMed  Google Scholar 

  16. Stickney R, Marx R, Olsufka M, Doherty A, McMahon M, Walker C, O'Grady S (2005) Accurate measurement of chest compressions from thoracic impedance signals. Circulation 112(17):II-326

    Google Scholar 

  17. Losert H, Risdal M, Sterz F, Nysaether J, Kohler K, Eftestol T, Wandaller C, Myklebust H, Uray T, Sodeck G, Laggner AN (2006) Thoracic impedance changes measured via defibrillator pads can monitor ventilation in critically ill patients and during cardiopulmonary resuscitation. Crit Care Med 34(9):2399–2405. https://doi.org/10.1097/01.ccm.0000235666.40378.60

    Article  PubMed  Google Scholar 

  18. Chamberlain D (2010) Predictors of survival from out-of-hospital cardiac arrest. Heart 96(22):1785–1786. https://doi.org/10.1136/hrt.2010.207076

    Article  PubMed  Google Scholar 

  19. Nolan JP, Soar J, Wenzel V, Paal P (2012) Cardiopulmonary resuscitation and management of cardiac arrest. Nat Rev Cardiol 9(9):499–511. https://doi.org/10.1038/nrcardio.2012.78

    Article  CAS  PubMed  Google Scholar 

  20. Stub D, Nehme Z, Bernard S, Lijovic M, Kaye DM, Smith K (2014) Exploring which patients without return of spontaneous circulation following ventricular fibrillation out-of-hospital cardiac arrest should be transported to hospital? Resuscitation 85(3):326–331. https://doi.org/10.1016/j.resuscitation.2013.12.010

    Article  PubMed  Google Scholar 

  21. Jarman AF, Hopkins CL, Hansen JN, Brown JR, Burk C, Youngquist ST (2017) Advanced airway type and its association with chest compression interruptions during out-of-hospital cardiac arrest resuscitation attempts. Prehosp Emerg Care 21(5):628–635. https://doi.org/10.1080/10903127.2017.1308611

    Article  PubMed  Google Scholar 

  22. Yannopoulos D, Aufderheide TP, Abella BS, Duval S, Frascone RJ, Goodloe JM, Mahoney BD, Nadkarni VM, Halperin HR, O'Connor R, Idris AH, Becker LB, Pepe PE (2015) Quality of CPR: an important effect modifier in cardiac arrest clinical outcomes and intervention effectiveness trials. Resuscitation 94:106–113. https://doi.org/10.1016/j.resuscitation.2015.06.004

    Article  PubMed  Google Scholar 

  23. Christenson J, Andrusiek D, Everson-Stewart S, Kudenchuk P, Hostler D, Powell J, Callaway CW, Bishop D, Vaillancourt C, Davis D, Aufderheide TP, Idris A, Stouffer JA, Stiell I, Berg R (2009) Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation 120(13):1241–1247. https://doi.org/10.1161/circulationaha.109.852202

    Article  PubMed  PubMed Central  Google Scholar 

  24. Krarup NH, Terkelsen CJ, Johnsen SP, Clemmensen P, Olivecrona GK, Hansen TM, Trautner S, Lassen JF (2011) Quality of cardiopulmonary resuscitation in out-of-hospital cardiac arrest is hampered by interruptions in chest compressions—a nationwide prospective feasibility study. Resuscitation 82(3):263–269. https://doi.org/10.1016/j.resuscitation.2010.11.003

    Article  PubMed  Google Scholar 

  25. Olasveengen TM, Vik E, Kuzovlev A, Sunde K (2009) Effect of implementation of new resuscitation guidelines on quality of cardiopulmonary resuscitation and survival. Resuscitation 80(4):407–411. https://doi.org/10.1016/j.resuscitation.2008.12.005

    Article  PubMed  Google Scholar 

  26. Sayre MR, Cantrell SA, White LJ, Hiestand BC, Keseg DP, Koser S (2009) Impact of the 2005 american heart association cardiopulmonary resuscitation and emergency cardiovascular care guidelines on out-of-hospital cardiac arrest survival. Prehosp Emerg Care 13(4):469–477. https://doi.org/10.1080/10903120903144965

    Article  PubMed  Google Scholar 

  27. Cheskes S, Schmicker RH, Verbeek PR, Salcido DD, Brown SP, Brooks S, Menegazzi JJ, Vaillancourt C, Powell J, May S, Berg RA, Sell R, Idris A, Kampp M, Schmidt T, Christenson J (2014) The impact of peri-shock pause on survival from out-of-hospital shockable cardiac arrest during the resuscitation outcomes consortium primed trial. Resuscitation 85(3):336–342. https://doi.org/10.1016/j.resuscitation.2013.10.014

    Article  PubMed  Google Scholar 

  28. Vaillancourt C, Everson-Stewart S, Christenson J, Andrusiek D, Powell J, Nichol G, Cheskes S, Aufderheide TP, Berg R, Stiell IG (2011) The impact of increased chest compression fraction on return of spontaneous circulation for out-of-hospital cardiac arrest patients not in ventricular fibrillation. Resuscitation 82(12):1501–1507. https://doi.org/10.1016/j.resuscitation.2011.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  29. Idris AH, Guffey D, Aufderheide TP, Brown S, Morrison LJ, Nichols P, Powell J, Daya M, Bigham BL, Atkins DL, Berg R, Davis D, Stiell I, Sopko G, Nichol G (2012) Relationship between chest compression rates and outcomes from cardiac arrest. Circulation 125(24):3004–3012. https://doi.org/10.1161/circulationaha.111.059535

    Article  PubMed  PubMed Central  Google Scholar 

  30. Odegaard S, Pillgram M, Berg NE, Olasveengen T, Kramer-Johansen J (2008) Time used for ventilation in two-rescuer CPR with a bag-valve-mask device during out-of-hospital cardiac arrest. Resuscitation 77(1):57–62. https://doi.org/10.1016/j.resuscitation.2007.11.005

    Article  PubMed  Google Scholar 

  31. Cordioli RL, Brochard L, Suppan L, Lyazidi A, Templier F, Khoury A, Delisle S, Savary D, Richard JC (2018) How ventilation is delivered during cardiopulmonary resuscitation: an international survey. Respir Care 63(10):1293–1301. https://doi.org/10.4187/respcare.05964

    Article  PubMed  Google Scholar 

  32. Lurie KG, Yannopoulos D, McKnite SH, Herman ML, Idris AH, Nadkarni VM, Tang W, Gabrielli A, Barnes TA, Metzger AK (2008) Comparison of a 10-breaths-per-minute versus a 2-breaths-per-minute strategy during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respir Care 53(7):862–870

    PubMed  Google Scholar 

  33. Handley AJ (2015) To ventilate or not to ventilate? That is the question—again. Resuscitation 91:A11–12. https://doi.org/10.1016/j.resuscitation.2015.03.019

    Article  PubMed  Google Scholar 

  34. Seethala RR, Abella BS (2010) To ventilate or not to ventilate during cardiopulmonary resuscitation: that is the question. Heart 96(8):577–578. https://doi.org/10.1136/hrt.2009.183756

    Article  PubMed  Google Scholar 

  35. Aufderheide TP (2006) The problem with and benefit of ventilations: should our approach be the same in cardiac and respiratory arrest? Curr Opin Crit Care 12(3):207–212. https://doi.org/10.1097/01.ccx.0000224863.55711.56

    Article  PubMed  Google Scholar 

  36. McDannold R, Bobrow BJ, Chikani V, Silver A, Spaite DW, Vadeboncoeur T (2018) Quantification of ventilation volumes produced by compressions during emergency department cardiopulmonary resuscitation. Am J Emerg Med 36(9):1640–1644. https://doi.org/10.1016/j.ajem.2018.06.057

    Article  PubMed  Google Scholar 

  37. Fouche PF, Simpson PM, Bendall J, Thomas RE, Cone DC, Doi SA (2014) Airways in out-of-hospital cardiac arrest: systematic review and meta-analysis. Prehosp Emerg Care 18(2):244–256. https://doi.org/10.3109/10903127.2013.831509

    Article  PubMed  Google Scholar 

  38. Hasegawa K, Hiraide A, Chang Y, Brown DF (2013) Association of prehospital advanced airway management with neurologic outcome and survival in patients with out-of-hospital cardiac arrest. JAMA 309(3):257–266. https://doi.org/10.1001/jama.2012.187612

    Article  CAS  PubMed  Google Scholar 

  39. McMullan J, Gerecht R, Bonomo J, Robb R, McNally B, Donnelly J, Wang HE (2014) Airway management and out-of-hospital cardiac arrest outcome in the CARES registry. Resuscitation 85(5):617–622. https://doi.org/10.1016/j.resuscitation.2014.02.007

    Article  PubMed  Google Scholar 

  40. Jabre P, Penaloza A, Pinero D et al (2018) Effect of bag-mask ventilation vs endotracheal intubation during cardiopulmonary resuscitation on neurological outcome after out-of-hospital cardiorespiratory arrest: a randomized clinical trial. JAMA 319(8):779–787. https://doi.org/10.1001/jama.2018.0156

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nichol G, Leroux B, Wang H, Callaway CW, Sopko G, Weisfeldt M, Stiell I, Morrison LJ, Aufderheide TP, Cheskes S, Christenson J, Kudenchuk P, Vaillancourt C, Rea TD, Idris AH, Colella R, Isaacs M, Straight R, Stephens S, Richardson J, Condle J, Schmicker RH, Egan D, May S, Ornato JP (2015) Trial of continuous or interrupted chest compressions during CPR. N Engl J Med 373(23):2203–2214. https://doi.org/10.1056/NEJMoa1509139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the whole staff of the Emergency Medical Service and the Cardiovascular Department of Trieste University Hospital for their collaboration.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Sanson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

This research conforms with the principles outlined in the Declaration of Helsinki. The study was approved by the Institutional Ethical Committee as a part of the Italian Registry of Cardiac Arrest-RIAC study.

Informed consent

For survived patients admitted to the hospital, consent was managed following institutional procedures, providing that patients or her/his legal representative authorized the use of their clinical data for research purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanson, G., Ristagno, G., Caggegi, G.D. et al. Impact of ‘synchronous’ and ‘asynchronous’ CPR modality on quality bundles and outcome in out-of-hospital cardiac arrest patients. Intern Emerg Med 14, 1129–1137 (2019). https://doi.org/10.1007/s11739-019-02138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-019-02138-9

Keywords

Navigation