Skip to main content

Advertisement

Log in

Antimicrobial resistance in internal medicine wards

  • SYMPOSIUM - PNEUMONIA IN THE FRAIL PATIENT
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Antimicrobial resistance is a global medical problem, affecting most bacterial pathogens. The major challenges are currently posed by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), Enterobacteriaceae producing extended-spectrum-beta-lactamases (ESBL) and carbapenemases, and multi-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Therapeutic options are very limited and, in some cases, virtually unavailable. This article provides an overview of the recent epidemiological trends exhibited by the most important multi-resistant pathogens, and of the treatment options that are currently available for these infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Maragakis LL, Perencevich EN, Cosgrove SE (2008) Clinical and economic burden of antimicrobial resistance. Expert Rev Anti Infect Ther 6(5):751–763

    Article  PubMed  Google Scholar 

  2. European Centre for Disease Prevention and Control (2011) Antimicrobial resistance surveillance in Europe 2010: annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). ECDC, Stockholm

    Google Scholar 

  3. Rybak M, Lomaestro B, Rotschafer JC et al (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66(1):82–98

    Article  PubMed  CAS  Google Scholar 

  4. EUCAST breakpoints document version 2.0, 2012 (http://www.eucast.org/)

  5. Svetitsky S, Leibovici L, Paul M (2009) Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother 53(10):4069–4079

    Article  PubMed  CAS  Google Scholar 

  6. Tascini C, Tagliaferri E, Di Paolo A et al (2009) Three-times weekly teicoplanin as outpatient treatment of chronic osteoarticular infections. J Chemother 21(4):421–425

    PubMed  CAS  Google Scholar 

  7. Sakoulas G, Moise-Broder PA, Schentag J et al (2004) Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42(6):2398–2402

    Article  PubMed  CAS  Google Scholar 

  8. Moise PA, Sakoulas G, Forrest A, Schentag JJ (2007) Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 51(7):2582–2586

    Article  PubMed  CAS  Google Scholar 

  9. Lodise TP, Graves J, Evans A et al (2008) Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 52(9):3315–3320

    Article  PubMed  CAS  Google Scholar 

  10. Soriano A, Marco F, Martínez JA et al (2008) Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 46(2):193–200

    Article  PubMed  CAS  Google Scholar 

  11. Choi EY, Huh JW, Lim CM et al (2011) Relationship between the MIC of vancomycin and clinical outcome in patients with MRSA nosocomial pneumonia. Intensive Care Med 37(4):639–647

    Article  PubMed  Google Scholar 

  12. Haque NZ, Zuniga LC, Peyrani P, Improving Medicine through Pathway Assessment of Critical Therapy of Hospital-Acquired Pneumonia (IMPACT-HAP) Investigators et al (2010) Relationship of vancomycin minimum inhibitory concentration to mortality in patients with methicillin-resistant Staphylococcus aureus hospital-acquired, ventilator-associated, or health-care-associated pneumonia. Chest 138(6):1356–1362

    Article  PubMed  CAS  Google Scholar 

  13. Steinkraus G, White R, Friedrich L (2007) creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05. J Antimicrob Chemother 60(4):788–794

    Article  PubMed  CAS  Google Scholar 

  14. Ho PL, Lo PY, Chow KH et al (2010) Vancomycin MIC creep in MRSA isolates from 1997 to 2008 in a healthcare region in Hong Kong. J Infect 60(2):140–145

    Article  PubMed  Google Scholar 

  15. Hawser SP, Bouchillon SK, Hoban DJ et al (2011) Rising incidence of Staphylococcus aureus with reduced susceptibility to vancomycin and susceptibility to antibiotics: a global analysis 2004–2009. Int J Antimicrob Agents 37(3):219–224

    Article  PubMed  CAS  Google Scholar 

  16. Gould IM (2010) VRSA-doomsday superbug or damp squib? Lancet Infect Dis 10(12):816–818

    Article  PubMed  Google Scholar 

  17. Maor Y, Hagin M, Belausov N et al (2009) Clinical features of heteroresistant vancomycin-intermediate Staphylococcus aureus bacteremia versus those of methicillin-resistant S. aureus bacteremia. J Infect Dis 199(5):619–624

    Article  PubMed  Google Scholar 

  18. Dryden MS (2011) Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. J Antimicrob Chemother 66(Suppl 4):iv7–iv15

    Article  PubMed  CAS  Google Scholar 

  19. Rayner CR, Forrest A, Meagher AK et al (2003) Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 42(15):1411–1423

    Article  PubMed  CAS  Google Scholar 

  20. CLSI M100-S22 document. http://www.clsi.org/

  21. Gould FK (2011) Linezolid: safety and efficacy in special populations. J Antimicrob Chemother 66(Suppl 4):3–6

    Google Scholar 

  22. Goldberg E, Paul M, Talker O et al (2010) Co-trimoxazole versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus bacteraemia: a retrospective cohort study. J Antimicrob Chemother 65(8):1779–1783

    Article  PubMed  CAS  Google Scholar 

  23. Walkey AJ, O’Donnell MR, Wiener RS (2011) Linezolid vs glycopeptides antibiotics for the treatment of suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a meta-analysis of randomized controlled trials. Chest 139(5):1148–1155

    Article  PubMed  CAS  Google Scholar 

  24. Kunkel M, Chastre JE, Kollef M (2010) Vancomycin in the treatment of nosocomial pneumonia proven due to MRSA. In: Program and abstracts of the Infectious Diseases Society of America (IDSA) 48th annual meeting; October 21–24, 2010; Vancouver, British Columbia, Canada. Session LB-29

  25. Tascini C, Bongiorni MG, Doria R et al (2011) Linezolid for endocarditis: a case series of 14 patients. J Antimicrob Chemother 66(3):679–682

    Article  PubMed  CAS  Google Scholar 

  26. Adembri C, Fallani S, Cassetta MI et al (2008) Linezolid pharmacokinetic/pharmacodynamic profile in critically ill septic patients: intermittent versus continuous infusion. Int J Antimicrob Agents 31(2):122–129

    Article  PubMed  CAS  Google Scholar 

  27. Mulanovich VE, Huband MD, McCurdy SP et al (2010) Emergence of linezolid-resistant coagulase-negative Staphylococcus in a cancer centre linked to increased linezolid utilization. J Antimicrob Chemother 65(9):2001–2004

    Article  PubMed  CAS  Google Scholar 

  28. Toh SM, Xiong L, Arias CA et al (2007) Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol Microbiol 64(6):1506–1514

    Article  PubMed  CAS  Google Scholar 

  29. Biedenbach DJ, Farrell DJ, Mendes RE et al (2010) Stability of linezolid activity in an era of mobile oxazolidinone resistance determinants: results from the 2009 Zyvox® Annual Appraisal of Potency and Spectrum program. Diagn Microbiol Infect Dis 68(4):459–467

    Article  PubMed  CAS  Google Scholar 

  30. Rossolini GM, Mantengoli E, Montagnani F, Pollini S (2010) Epidemiology and clinical relevance of microbial resistance determinants versus anti-Gram-positive agents. Curr Opin Microbiol 13(5):582–588

    Article  PubMed  CAS  Google Scholar 

  31. Bhavnani SM, Rubino CM, Ambrose PG et al (2010) Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin Infect Dis 50(12):1568–1574

    Article  PubMed  CAS  Google Scholar 

  32. Fowler VG Jr, Boucher HW, Corey GR, S. aureus Endocarditis and Bacteremia Study Group et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355(7):653–665

    Article  PubMed  CAS  Google Scholar 

  33. Rehm SJ, Boucher H, Levine D et al (2008) Daptomycin versus vancomycin plus gentamicin for treatment of bacteraemia and endocarditis due to Staphylococcus aureus: subset analysis of patients infected with methicillin-resistant isolates. J Antimicrob Chemother 62(6):1413–1421

    Article  PubMed  CAS  Google Scholar 

  34. Utili R (2009) Treatment of multiresistant Gram positive endocarditis [article in Italian]. Infez Med 17(Suppl 3):13–24

    PubMed  Google Scholar 

  35. Kelesidis T, Humphries R, Ward K et al (2011) Combination therapy with daptomycin, linezolid, and rifampin as treatment option for MRSA meningitis and bacteremia. Diagn Microbiol Infect Dis 71(3):286–290

    Article  PubMed  CAS  Google Scholar 

  36. Mendes RE, Jones RN, Deshpande LM et al (2009) Daptomycin activity tested against linezolid-nonsusceptible gram-positive clinical isolates. Microb Drug Resist 15(4):245–249

    Article  PubMed  CAS  Google Scholar 

  37. Kelley PG, Gao W, Ward PB, Howden BP (2011) Daptomycin non-susceptibility in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous-VISA (hVISA): implications for therapy after vancomycin treatment failure. J Antimicrob Chemother 66(5):1057–1060

    Article  PubMed  CAS  Google Scholar 

  38. Polidori M, Nuccorini A, Tascini C et al (2011) Vancomycin-resistant Enterococcus faecium (VRE) bacteremia in infective endocarditis successfully treated with combination daptomycin and tigecycline. J Chemother 23(4):240–241

    PubMed  CAS  Google Scholar 

  39. Yahav D, Lador A, Paul M, Leibovici L (2011) Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother 66(9):1963–1971

    Article  PubMed  CAS  Google Scholar 

  40. Cunha BA (2009) Pharmacokinetic considerations regarding tigecycline for multidrug-resistant (MDR) Klebsiella pneumoniae or MDR Acinetobacter baumannii urosepsis. J Clin Microbiol 47(5):1613

    Article  PubMed  Google Scholar 

  41. Liu C, Bayer A, Cosgrove SE et al (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis 52(3):285–292

    Article  PubMed  Google Scholar 

  42. Malacarne P, Boccalatte D, Acquarolo A et al (2010) Epidemiology of nosocomial infection in 125 Italian intensive care units. Minerva Anestesiol 76(1):13–23

    PubMed  CAS  Google Scholar 

  43. Al-Nassir WN, Sethi AK, Li Y et al (2008) Both oral metronidazole and oral vancomycin promote persistent overgrowth of vancomycin-resistant enterococci during treatment of Clostridium difficile-associated disease. Antimicrob Agents Chemother 52(7):2403–2406

    Article  PubMed  CAS  Google Scholar 

  44. Salgado CD (2008) The risk of developing a vancomycin-resistant Enterococcus bloodstream infection for colonized patients. Am J Infect Control 36(10):S175.e5–S175.e8

    Article  Google Scholar 

  45. Magee HR (2007) Probiotic treatment of vancomycin-resistant enterococci: a randomised controlled trial. Comment Med J Aust 187(5):320

    Google Scholar 

  46. Gavaldà J, Len O, Miró JM et al (2007) Treatment of Enterococcus faecalis endocarditis with ampicillin plus ceftriaxone. Ann Intern Med 146(8):574–579

    PubMed  Google Scholar 

  47. Euba G, Lora-Tamayo J, Murillo O et al (2009) Pilot study of ampicillin-ceftriaxone combination for treatment of orthopedic infections due to Enterococcus faecalis. Antimicrob Agents Chemother 53(10):4305–4310

    Article  PubMed  CAS  Google Scholar 

  48. Erlandson KM, Sun J, Iwen PC, Rupp ME (2008) Impact of the more potent antibiotics quinupristin-dalfopristin and linezolid on outcome measure of patients with vancomycin-resistant Enterococcus bacteremia. Clin Infect Dis 46(1):30–36

    Article  PubMed  Google Scholar 

  49. Mave V, Garcia-Diaz J, Islam T, Hasbun R (2009) Vancomycin-resistant enterococcal bacteraemia: is daptomycin as effective as linezolid? J Antimicrob Chemother 64(1):175–180

    Article  PubMed  CAS  Google Scholar 

  50. Pitout JD (2010) Infections with extended-spectrum beta-lactamase-producing enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs 70(3):313–333

    Article  PubMed  CAS  Google Scholar 

  51. Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18(4):657–686

    Article  PubMed  CAS  Google Scholar 

  52. Tumbarello M, Sanguinetti M, Montuori E et al (2007) Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 51(6):1987–1994

    Article  PubMed  CAS  Google Scholar 

  53. Schwaber MJ, Carmeli Y (2007) Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and metaanalysis. J Antimicrob Chemother 60(5):913–920

    Article  PubMed  CAS  Google Scholar 

  54. Paterson DL, Ko WC, Von Gottberg A et al (2001) Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 39(6):2206–2212

    Article  PubMed  CAS  Google Scholar 

  55. Andes D, Craig WA (2005) Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clin Microbiol Infect 11(Suppl 6):10–17

    Google Scholar 

  56. Mody RM, Erwin DP, Summers AM et al (2007) Ertapenem susceptibility of extended spectrum beta-lactamase-producing organisms. Ann Clin Microbiol Antimicrob 6(6):6

    Article  PubMed  Google Scholar 

  57. Elliott E, Brink AJ, van Greune J et al (2006) In vivo development of ertapenem resistance in a patient with pneumonia caused by Klebsiella pneumoniae with an extended-spectrum beta-lactamase. Clin Infect Dis 42(11):e95–e98

    Article  PubMed  Google Scholar 

  58. Kaufman SE, Donnell RW, Hickey WS (2011) Rationale and evidence for extended infusion of piperacillin-tazobactam. Am J Health Syst Pharm 68(16):1521–1526

    Article  PubMed  CAS  Google Scholar 

  59. Tasina E, Haidich AB, Kokkali S, Arvanitidou M (2011) Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect Dis 11(11):834–844

    Article  PubMed  CAS  Google Scholar 

  60. Luzzaro F, Brigante G, D’Andrea MM et al (2009) Spread of multidrug resistant Proteus mirabilis isolates producing an AmpC-type beta-lactamase: epidemiology and clinical management. Int J Antimicrob Agents 33(4):328–333

    Article  PubMed  CAS  Google Scholar 

  61. Kang CI, Pai H, Kim SH et al (2004) Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type beta-lactamase. J Antimicrob Chemother 54(6):1130–1133

    Article  PubMed  CAS  Google Scholar 

  62. Miriagou V, Cornaglia G, Edelstein M et al (2010) Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect 16(2):112–122

    Article  PubMed  CAS  Google Scholar 

  63. Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21(3):449–465

    Article  PubMed  CAS  Google Scholar 

  64. Nation RL, Li J (2009) Colistin in the 21st century. Curr Opin Infect Dis. 22(6):535–543

    Article  PubMed  CAS  Google Scholar 

  65. Bergen PJ, Li J, Nation RL et al (2008) Comparison of once-, twice and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. J Antimicrob Chemother 61(3):636–642

    Article  PubMed  CAS  Google Scholar 

  66. Owen RJ, Li J, Nation RL, Spelman D (2007) In vitro pharmacodynamics of colistin against Acinetobacter baumannii clinical isolates. J Antimicrob Chemother 59(3):473–477

    Article  PubMed  CAS  Google Scholar 

  67. Kofteridis DP, Alexopoulou C, Valachis A et al (2010) Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case-control study. Clin Infect Dis 51(11):1238–1244

    Article  PubMed  CAS  Google Scholar 

  68. Kwa AL, Falagas ME, Michalopoulos A, Tam VH (2011) Benefits of aerosolized colistin for ventilator-associated pneumonia: absence of proof versus proof of absence? Clin Infect Dis 52(10):1278–1279 (Author reply 1279–80)

    Article  PubMed  Google Scholar 

  69. Imberti R, Cusato M, Villani P et al (2010) Steady-state pharmacokinetics and BAL concentration of colistin in critically Ill patients after IV colistin methanesulfonate administration. Chest 138(6):1333–1339

    Article  PubMed  CAS  Google Scholar 

  70. Petrosillo N, Ioannidou E, Falagas ME (2008) Colistin monotherapy vs. combination therapy: evidence from microbiological, animal and clinical studies. Clin Microbiol Infect 14(9):816–827

    Article  PubMed  CAS  Google Scholar 

  71. Petrosillo N, Chinello P, Proietti MF et al (2005) Combined colistin and rifampicin therapy for carbapenem-resistant Acinetobacter baumannii infections: clinical outcome and adverse events. Clin Microbiol Infect 11(8):682–683

    Article  PubMed  CAS  Google Scholar 

  72. Tascini C, Gemignani G, Palumbo F et al (2006) Clinical and microbiological efficacy of colistin therapy alone or in combination as treatment for multidrug resistant Pseudomonas aeruginosa diabetic foot infections with or without osteomyelitis. J Chemother 18(6):648–651

    PubMed  CAS  Google Scholar 

  73. Bassetti M, Repetto E, Righi E et al (2008) Colistin and rifampicin in the treatment of multidrug-resistant Acinetobacter baumannii infections. J Antimicrob Chemother 61(2):417–420

    Article  PubMed  CAS  Google Scholar 

  74. Munoz-Price LS, Weinstein RA (2008) Acinetobacter infection. N Engl J Med 358(12):1271–1281

    Article  PubMed  CAS  Google Scholar 

  75. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21(3):538–582

    Article  PubMed  CAS  Google Scholar 

  76. Perez F, Hujer AM, Hujer KM et al (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51(10):3471–3484

    Article  PubMed  CAS  Google Scholar 

  77. Fishbain J, Peleg AY (2010) Treatment of Acinetobacter infections. Clin Infect Dis 51(1):79–84

    Article  PubMed  Google Scholar 

  78. Stroup JS, Mitchell K, Hitzeman D (2010) Novel treatment approach to combat an infection with Acinetobacter. Proc (Bayl Univ Med Cent) 23(1):29–30

    Google Scholar 

  79. Won SY, Munoz-Price LS, Lolans K et al (2011) Centers for Disease Control and Prevention Epicenter Program: emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis 53(6):532–540

    Article  PubMed  CAS  Google Scholar 

  80. Giani T, D’Andrea MM, Pecile P et al (2009) Emergence in Italy of Klebsiella pneumoniae sequence type 258 producing KPC-3 carbapenemase. J Clin Microbiol 47(11):3793–3794

    Article  PubMed  Google Scholar 

  81. Galbani P, Ambretti S, Berlingeri A et al (2011) Rapid increase of carbapenemase-producing Klebsiella pneumoniae strains in a large Italian hospital: surveillance period 1 March–30 September 2010. Euro Surveill 16(8):19800

    Google Scholar 

  82. Agodi A, Voulgari E, Barchitta M et al (2011) Containment of an outbreak of KPC-3-producing Klebsiella pneumoniae in Italy. J Clin Microbiol 49(11):3986–3989

    Article  PubMed  Google Scholar 

  83. Mezzatesta ML, Gona F, Caio C et al (2011) Outbreak of KPC-3-producing, and colistin-resistant, Klebsiella pneumoniae infections in two Sicilian hospitals. Clin Microbiol Infect 17(9):1444–1447

    PubMed  CAS  Google Scholar 

  84. Giani T, Arena F, Cannatelli A, et al. (2011) Rapid multifocal emergence of colistin-resistant Klebsiella pneumoniae producing KPC-type carbapenemases, Italy. In: 51st Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, USA, 17–21 Sept 2011, poster c2669b

  85. CDC (2009) Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 58(10):256–260

    Google Scholar 

  86. Munoz-Price LS, Hayden MK, Lolans K et al (2010) Successful control of an outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae at a long-term acute care hospital. Infect Control Hosp Epidemiol 31(4):341–347

    Article  PubMed  Google Scholar 

  87. Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, Polsky B, Adams-Haduch JM, Doi Y (2012) Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother 56(4):2108–2113

    Article  PubMed  CAS  Google Scholar 

  88. Bratu S, Tolaney P, Karumudi U et al (2005) Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother 56(1):128–132

    Article  PubMed  CAS  Google Scholar 

  89. Zuckerman T, Benyamini N, Sprecher H et al (2011) SCT in patients with carbapenem resistant Klebsiella pneumoniae: a single center experience with oral gentamicin for the eradication of carrier state. Bone Marrow Transplant 46(9):1226–1230

    Article  PubMed  CAS  Google Scholar 

  90. Hirsch EB, Tam VH (2010) Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother 65(6):1119–1125

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Tagliaferri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menichetti, F., Tagliaferri, E. Antimicrobial resistance in internal medicine wards. Intern Emerg Med 7 (Suppl 3), 271–281 (2012). https://doi.org/10.1007/s11739-012-0828-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-012-0828-3

Keywords

Navigation