Skip to main content
Log in

Membrane phospholipid composition during maturation of seeds of Acer platanoides and Acer pseudoplatanus in relation to desiccation tolerance

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Membrane phospholipid composition was investigated in seeds of two species from the genus Acer: Norway maple (Acer platanoides L.) — tolerant to desiccation, and sycamore (Acer pseudoplatanus L.) — intolerant to desiccation, during their maturation, from 1 August to 25 September 1995, at weekly intervals. Seeds of Norway maple acquire tolerance to desiccation at the end of August ie. about 125 days after flowering (DAF). Phospholipid composition during development revealed marked differences between studied seeds. Seeds of Norway maple after acquiring tolerance to desiccation contained much more phosphatidylcholine (PC) and phosphatidylethanolamine (PE), compared to sycamore. The ratio of PC/PE in mature Norway maple seeds was evidently higher than those in sycamore. The level of unsaturated fatty acids in the phospholipid fraction substantially increased in Norway maple seeds during development and the saturation of PC and PE was less than in sycamore. The results suggest that phospholipid composition may be involved in desiccation tolerance of Norway maple seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen C.F., Good P., Davis H.F., Chisum P., Fowler S. D. 1966. Methodology for the separation of plant lipids and application to spinach leaf and chloroplast lamellae. J. Am. Oil Chem. Soc. 43: 223–230.

    Article  CAS  Google Scholar 

  • Ames D.N. 1966. Assay of inorganic phosphate, total phosphate and phosphatases. In: Methods in Enzymology, ed. by S.P. Colowick and N.O. Kaplan., Academic Press, New York. 8: 115–118.

    Google Scholar 

  • Bewley J.D. 1979. Physiological aspects of desiccation tolerance. Ann. Rev. Plant Physiol. 30. 195–238.

    Article  CAS  Google Scholar 

  • Bruni F., Leopold A.C. 1991. Glass transition in soybean seed. Relevance to anhydrous biology. Plant Physiol. 96: 660–663.

    PubMed  Google Scholar 

  • Caffrey M., Fonseca V. Leopold A.C. 1988. Lipid sugar interactions. Relevance to anhydrous biology. Plant Physiol. 86: 754–758.

    PubMed  CAS  Google Scholar 

  • Chapman D., Wallach D.F.H. 1968. Recent physical studies of phospholipids and natural membranes. In: Biological Membranes ed. by D. Chapman, Academic Press, New York. 125–202.

    Google Scholar 

  • Chen Y., Burris J.S. 1991. Desiccation tolerance in maturing maize seed: membrane phospholipid composition and thermal properties. Crop Sci. 31: 666–770.

    Google Scholar 

  • Crowe J.H., Crowe L.M., Carpenter J.F., Aurell Wistrom, C. 1987. Stabilization of dry phospholipid bilayers and proteins by sugars. Bioch. J. 242: 1–10.

    CAS  Google Scholar 

  • Crowe J.H., Hoekstra F.A., Crowe L.M. 1992. Anhydrobiosis. Ann. Rev. Plant Physiol. 54: 579–599.

    CAS  Google Scholar 

  • Crowe J.H., Hoekstra F.A., Nguyen K.H.N., Crowe L.M. 1996. Is vitrification involved in depression of the phase transition temperature in dry phospholipids? Biochim. Biophys. Acta 1280: 187–196.

    Article  PubMed  Google Scholar 

  • Dickie J.B., May K., Morris S.V.A., Titley S.E. 1991. The effect of desiccation on seed survival in Acer platanoides L. and Acer pseudoplatanus L. Seed Sci. Res. 1: 149–162.

    Google Scholar 

  • Hoekstra F.A., van Roekel T. 1988. Desiccation tolerance of Papaver dubium L. pollen during its development in the anther. Possible role of phospholipid composition and sucrose content. Plant Physiol. 88: 626–632.

    PubMed  CAS  Google Scholar 

  • Hoekstra F.A., Crowe L.M., Crowe J.H. 1989. Differential desiccation sensitivity of corn and Pennisetum pollen linked to their sucrose content. Plant Cell Environ. 12: 83–91.

    Article  CAS  Google Scholar 

  • Hoekstra F.A., Crowe J.H., Crowe L.M. 1991. Effect of sucrose on phase behavior of membranes in intact pollen of Typha latifolia L., as measured with Fourier transform infrared spectroscopy. Plant Physiol. 97: 1073–1079.

    PubMed  CAS  Google Scholar 

  • Hoekstra F.A., Crowe J.H., Crowe L.M., Van Roekel T., Vermeer E. 1992. Do phospholipid and sucrose determine membrane phase transitions in dehydrating pollen species? Plant Cell Environ. 15: 601–606.

    Article  CAS  Google Scholar 

  • Juaneda P.G., Rocquelin G. 1985. Rapid and convenient separation of phospholipids and non-phosphorus lipids from rat heart using silica cartridges. Lipids 20: 40–41.

    Article  PubMed  CAS  Google Scholar 

  • Leprince O., Hendry G.A., Mc. Kersie B.D. 1993. The mechanism of desiccation tolerance in developing seeds. Seed Sci. Res. 3: 231–246.

    Google Scholar 

  • Liljenberg C., Kates M. 1985. Changes in the lipid composition of oat root membranes as a function of water-deficit stress. Can. J. Biochem. Cell Biol. 63: 77–84.

    Article  CAS  Google Scholar 

  • Metcalfe L.D., Schmitz A.A., Pelka J.R. 1966. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 38: 514–515.

    Article  CAS  Google Scholar 

  • Nichols B.W., Harris R.V., James A.T. 1965. The lipid matabolism of blue-green algae. Biochim. Biophys. Res. Commun. 20: 256–262.

    Article  CAS  Google Scholar 

  • Pukacka S. 1983. Phospholipid changes and loss of viability in Norway maple (Acer platanoides L.) seeds Z. Pflanzenphysiol. 112: 199–205.

    CAS  Google Scholar 

  • Pukacka S., Kuiper P.J.C. 1988. Phospholipid composition and fatty acid peroxidation during ageing of Acer platanoides seeds. Physiol. Plant. 72: 89–93.

    Article  CAS  Google Scholar 

  • Pukacka S. 1989. The effect of desiccation on viability and phospholipid composition of Acer saccharinum L. seeds. Trees 3: 144–148.

    Article  Google Scholar 

  • Pukacka S. 1998. Changes in membrane fatty acid composition during desiccation of seeds of silver maple. Seed Sci. Tech. 26: 535–540.

    Google Scholar 

  • Pukacka S., Pukacki P. 1997. Changes in soluble sugars in relation to desiccation tolerance and effects of dehydration on freezing characteristics of Acer platanoides and Acer pseudoplatanus seeds. Acta Physiol. Plant. 19: 147–154.

    Article  CAS  Google Scholar 

  • Pukacka S. 1998. Charakterystyka rozwoju nasion klonu zwyczajneo (Acer platanoides L.) i jaworu (Acer pseudoplatanus L.) Arboretum Kórnickie 43: 97–104.

    Google Scholar 

  • Roberts E.H. 1973. Predicting the storage life of seeds. Seed Sci. Tech. 1: 499–514.

    Google Scholar 

  • Senaratna T., McKersie B.D., Borochov A. 1987. Desiccation and free radical mediated changes in plant membranes. J. Exp. Bot. 38: 2005–2014.

    Article  CAS  Google Scholar 

  • Tetteroo F.A.A., Bomal C., Hoekstra F.A., Karssen C.M. 1994. Effect of abscisic acid and slow drying on soluble carbohydrate content in developing embryoids of carrot (Daucus carota L.) and alfalfa (Medicago sativa L.). Seed Sci. Res. 4: 203–210.

    CAS  Google Scholar 

  • Uemura M., Steponkus P.L. 1989. Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves. Plant Physiol. 91: 1131–1137.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pukacka, S. Membrane phospholipid composition during maturation of seeds of Acer platanoides and Acer pseudoplatanus in relation to desiccation tolerance. Acta Physiol Plant 21, 109–115 (1999). https://doi.org/10.1007/s11738-999-0064-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-999-0064-2

Key words

Navigation