Skip to main content
Log in

Cd - tolerance of maize, rye and wheat seedlings

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effect of cadmium on growth parameters of seedlings of maize, rye and wheat as well as the role of phytochelatins in Cd detoxication in these species were studied. Cadmium was found to inhibit root growth and decrease fresh weight and water content in roots and shoots of the studied plants. Although a considerably lower Cd accumulation was shown in maize seedlings than in other species, they were characterized by the highest sensitivity to cadmium. Among γ-Glu-Cys peptides synthetized by plant species, phytochelatins — glutathione derivatives predominated. In maize they were synthetized in amounts sufficient for binding the total pool of the metal taken up, and the detoxication mechanism was localized in their roots. Larger amounts of cadmium were accumulated in roots of wheat and rye, but the quantity of the formed γ-Glu-Cys peptides seems insufficient for detoxication of the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker A. J. M., Walker P. L. 1990. Ecophysiology of metal uptake by tolerant plants. In: Heavy metal tolerance in plants: evolutionary aspects, ed. by A.J. Shaw, CRC Press, Inc., Boca Raton, Florida: 155–178.

    Google Scholar 

  • Barceló J., Poschenrieder Ch., Andreu I., Gunse B. 1986. Cadmium induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticity. J. Plant Physiol., 125: 17–25.

    Google Scholar 

  • Barceló J., Poschenrieder Ch. 1990. Plant water relations as affected by heavy metal stress: a review. J. Plant Nutr., 13: 1–37.

    Google Scholar 

  • Costa G., Spitz E. 1997. Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant. Sci., 128: 131–140.

    Article  CAS  Google Scholar 

  • Baszyński T., Krupa Z. 1992. Molekularne aspekty inhibujacego działania kadmu na aparat fotosyntetycznyfakty i przypuszczenia. SGGW, Warszawa: 11–26.

    Google Scholar 

  • Costa G., Morel J.-L. 1994. Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol. Biochem., 32: 561–570.

    CAS  Google Scholar 

  • Ernst W.H.O., Vekleij J.A.C., Schat H. 1992. Metal tolerance in plants. Acta Bot. Neerl., 41: 229–248.

    CAS  Google Scholar 

  • Gekeler W., Grill E., Winnacker E.-L., Zenk M.H. 1989. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z. Naturforsch., 44c: 361–369.

    Google Scholar 

  • Grill E., Winnacker E.-L., Zenk M.H. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science, 230: 674–676.

    Article  CAS  PubMed  Google Scholar 

  • Grill E., Gekeler W., Winnacker E.-L., Zenk M.H. 1986. Homo-phytochelatins are heavy metal binding peptides of homo-glutathione. FEBS Lett., 205: 47–50.

    Article  CAS  Google Scholar 

  • Hardiman R.T., Jacoby B. 1984. Absorption and translocation of Cd in bush beans (Phaseolus vulgaris). Physiol. Plant., 61: 670–674.

    Article  CAS  Google Scholar 

  • Harper F.A., Smith S.E., Macnair M.R. 1997. Where is the cost in copper tolerance in Mimulus guttatus? Testing the trade-off hypothesis. Functional Ecology, 11: 764–774.

    Article  Google Scholar 

  • Hoagland D.R., Arnon D.J. 1950. The water-culture method of growing plants without soil. Calif. Agr. Expt. Sta. Circ., 347: 26–29.

    Google Scholar 

  • Jastrow J., Koeppe D.E. 1980. Uptake and effects of cadmium in higher plants. In: Cadmium in the environment, part I: Ecological Cycling, ed. by I.O. Nriagu, A Wiley-Interscience Publication, John Wiley & Sons: 608–638.

  • Kahle H. 1993. Response of roots of trees to heavy metals. Environ. Exp. Bot., 33: 99–119.

    Article  Google Scholar 

  • Kastori R., Petrovič M., Petrovič N. 1992. Effect of excess lead, cadmium, copper and zinc on water relations in sunflower. J. Plant Nutr., 15: 2427–2439.

    CAS  Google Scholar 

  • Klapheck S., Fliegner W., Zimmer I., 1994. Hydroxymethyl-phytochelatins [(-glutamylocysteine)n-serine] are metal-induced peptides of the Poaceae. Plant Physiol., 104: 1325–1332.

    Article  PubMed  CAS  Google Scholar 

  • Kondo N., Imai K., Isobe M., Goto T., Marasugi A., Wada-Nakagawa C., Hayashi Y. 1984. Cadystin A and B, major subunit peptides comprising cadmium binding peptides induced in fission yeast - separation, reversion of structures and synthesis. Tetrahedron Lett., 25: 3869–3872.

    Article  CAS  Google Scholar 

  • Lozano-Rodríguez E., Hernández L.E., Bonay P., Carpena-Ruiz R.O. 1997. Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J. Exp. Bot., 48: 123–128.

    Article  Google Scholar 

  • Małkowski E., Stolarek J., Karcz W. 1996. Toxic effect of Pb2+ ions on extension growth of cereal plants. Polish J. Environ. Studies, 5: 41–45.

    Google Scholar 

  • Meuwly P., Rauser W.E. 1992. Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium. Plant Physiol., 99: 8–15.

    PubMed  CAS  Google Scholar 

  • Meuwly P., Thibault P., Schwan A.E., Rauser W.E. 1995. Three families of thiol peptides are induced by cadmium in maize. Plant J., 7: 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum S., Schmutz D., Brunold C. 1988. Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol, 88: 1407–1410.

    Article  PubMed  CAS  Google Scholar 

  • Prasad M.N.V. 1995. Cadmium toxicity and tolerance in vascular plants. Environ. Exp. Bot., 35: 525–545.

    Article  CAS  Google Scholar 

  • Punz W.F., Sieghardt H. 1993. The response of roots of herbaceous plant species to heavy metals. Environ. Exp. Bot., 33: 85–98.

    Article  CAS  Google Scholar 

  • Rauser W.E. 1990. Phytochelatins. Annu. Rev. Biochem., 59: 61–86.

    Article  PubMed  CAS  Google Scholar 

  • Rauser W.E. 1993. Metal-binding peptides in plants. In: Sulfur nutrition and assimilation in higher plants, eds. by L.J. De Kok et al., SBP Ac. Pub. Bv., The Hague, The Netherlands: 239–251.

    Google Scholar 

  • Rauser W.E. 1995. Phytochelatins and related peptides. Structure, bio-synthesis, and function. Plant Physiol., 109: 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Rauser W.E., Meuwly P. 1995. Retention of cadmium in roots of maize seedlings. Plant Physiol., 109: 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Steffens J.C. 1990. The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41: 553–575.

    CAS  Google Scholar 

  • Strasdeit H., Duhme A.-K., Kneer R., Zenk M.H., Hermes Ch., Nolting H.-F. 1991. Evidence for discrete Cd(SCys)4 units in cadmium phytochelatin complexes from EXAFS Spectroscopy. J. Chem. Soc., Chem. Commun.: 1129–1130.

  • Tukendorf A. 1990. Rola kompleksów metaloproteinowych w tolerancji roślin wyższych na toksyczne steżenia metali cieżkich. Rozprawa habilitacyjna XXXIX, Wydawnictwo UMCS, Lublin.

  • Tukendorf A., Rauser W.E. 1990. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci., 70: 155–166.

    Article  CAS  Google Scholar 

  • Verkleij J.A.C., Schat H. 1990. Mechanisms of metal tolerance in higher plants. In: Heavy metal tolerance in plants: evolutionary aspects, ed. by A.J. Shaw, CRC Press, Inc., Boca Raton, Florida: 179–193.

    Google Scholar 

  • Vögeli-Lange R., Wagner G.J. 1996. Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Sci., 114: 11–18.

    Article  Google Scholar 

  • Wierzbicka M., Antosiewicz D. 1993. How lead can easily enter the food chain — a study of plant roots. Sci. Total Environ., Suppl.: 423–429.

  • Zenk M.H. 1996. Heavy metal detoxification in higher plants — a review. Gene, 179: 21–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wójicik, M., Tukendorf, A. Cd - tolerance of maize, rye and wheat seedlings. Acta Physiol Plant 21, 99–107 (1999). https://doi.org/10.1007/s11738-999-0063-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-999-0063-3

Key words

Navigation