Skip to main content
Log in

The effect of light on the level of acetylcholine in seedlings of the wild-type and phytochrome mutants of tomato (Lycopersicon esculentum Mill.)

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Applying the method of pyrolysis coupled with gas chromatography (PYR-GC) the content of endogenous acetylcholine (ACh) was investigated in the extracts obtained from tomato (Lycopersicon esculentum Mill.). Seven-day-old seedlings of wild type (WT) and phytochrome mutants au (aurea), hp (high pigment), fri (far-red light insensitive) and tri (temporarily red light insensitive) were studied. In the analyzed material the presence of choline and acetylcholine was discovered. The highest content of ACh (381 mmole/g of fresh weight) was found in tomato cotyledons, whereas the lowest amount (162 nmole/g of fresh weight) in roots. The level of ACh in the plants grown under the continuous light was higher than in etiolated ones. However, no considerable differences in the concentrations of ACh in au and tri seedlings grown under the continuous light and in darkness were observed. The irradiation of etiolated seedlings of wild type with red light was accompanied by the increase of endogenous level of ACh. The pulse of far-red light applied directly after red light reversed this stimulating effect. A similar effect of both light wavelengths on the content of ACh was also found in the case of the tri mutant. On the other hand, in the case of fri mutant, pulse of red light caused the drop in the content of ACh, whereas far-red applied after red light caused visible increase in the level of the investigated substance. In tissues of au mutant no effect of red and far-red lights on the concentration of ACh was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ach:

acetylcholine

AChE:

acetylcholinesterase

AChR:

acetylcholine receptor

ChAT:

choline acetyltransferase

FR:

far red light

PhyA:

labile phytochrome

PhyB:

stable phytochrome

PHYA :

gene of the labile phytochrome

PHYB :

gene of the stable phytochrome

R:

red light

References

  • Furuya M. 1993. Phytochromes: their molecular species, gene families and functions. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44: 617–645.

    Article  CAS  Google Scholar 

  • Furuya M., Schäfer E. 1996. Photoperception and signalling of induction reactions by different phytochromes. TIPS 1: 301–307.

    Google Scholar 

  • Hanin I., Jenden I. 1969. Estimation of choline esters in brain by a new gas chromatographic procedure. Biochem. Pharmac., 18: 837–845.

    Article  CAS  Google Scholar 

  • Hartmann E., Gupta R. 1989. Acetylcholine as a signaling system in plants. In: Second Messengers in Plant Growth and Development, ed. by W.E. Boss, D.J. Marre, A.R. Liss, Alan R. Liss Inc., Oxford: 257–288.

    Google Scholar 

  • Hartmann E., Kilbinger K. 1974a. Gas-liquid chromatographic determination of light-dependent acetylcholine concentration in moss callus. Biochem. J., 137: 249–252.

    PubMed  CAS  Google Scholar 

  • Hartmann E., Kilbinger K. 1974b. Occurrence of light-dependent acetylcholine concentrations in higher plants. Experientia 30: 1387–1388.

    Article  CAS  Google Scholar 

  • Jaffe M.J. 1970. Evidence for the regulation of phytochrome-mediated process in bean roots by the neurohumor, acetylcholine. Plant Physiol., 46: 768–777.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe M.J. 1972. Acetylcholine as a native metabolic regulator of phytochrome-mediated process in bean roots. In: Recent Advances in Phytochemistry. Vol. V: Structural and Functional Aspects of Phytochemistry, ed. by V.C. Runeckles, T.C. Tso, Academic Press, New York: 80–104.

    Google Scholar 

  • Jaffe M.J. 1976. Phytochrome-controlled acetylcholine synthesis at the endoplasmic reticulum. In: Light and Plant Development, ed. by H. Smith H. (ed.), Butterworths, London, pp. 333–334.

    Google Scholar 

  • Kendrick R.E., Kerckhoffs L.H.J., Pundsnes A.S., van Tuinen A., Koornneef M., Nagatani ., Terry M.J., Tretyn A., Cordonnier-Pratt M.-M., Hauser B., Pratt L.H. 1994. Photomor-phogenic mutants of tomato. Euphytica 79: 227–234.

    Article  Google Scholar 

  • Kendrick R.E., Kerckhoffs L.H.J., van Tuinen A., Koornneef M. 1997. Photomorpho-genic mutants of tomato. Plant Cell Environ. 20: 746–751.

    Article  CAS  Google Scholar 

  • Kendrick R.E., Kronenberg G.H.M. (eds.). 1994. Photomorphogenesis in Plants, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Kerckhoffs L.H.J. 1996. Physiological functions of phytochromes in tomato: a study using photomorphogenic mutants. Ph.D. Thesis, Wageningen, The Netherlands.

  • Kopcewicz J., Cymerski M., Poraziński Z. 1977. Influence of red and far-red irradiation on the acetylcholine and gibberellin content in scots pine seedlings. Bull. Acad. Polon. Sci. Ser. Biol. Sci., 25: 114–117.

    Google Scholar 

  • Lin R.C.I. 1957. Distribution of acetylcholine in the Malayan jack-fruit plant, Artocarpus integra. Brit. J. Pharmacol., 12: 256–269.

    Google Scholar 

  • Mathews S., Sharrock R.A. 1997. Phytochrome gene diversity. Plant Cell Environ., 20: 666–671.

    Article  CAS  Google Scholar 

  • Miura G.A., Broomfield C.A., Lawson M.A., Worthley E.G. 1982. Widespread occurrence of cholinesterase activity in plant leaves. Physiol. Plant., 56: 28–32.

    Article  CAS  Google Scholar 

  • Miura G.A., Shih T.-M. 1984. Cholinergic constituents in plants: Characterization and distribution of acetylcholine and choline. Physiol. Plant., 61: 417–421.

    Article  CAS  Google Scholar 

  • Momonoki Y.S., Momonoki T. 1991. Changes in acetylcholine levels following leaf wilting and leaf recovery by heat stress in plant cultivars. Jpn. J. Crop. Sci., 60: 283–290.

    CAS  Google Scholar 

  • Momonoki Y.S., Momonoki T. 1992. The influence of heat stress on acetylcholine content and its hydrolyzing activity in Macroptilium atropurpureum cv. Siratro. Jpn. J. Crop. Sci., 61: 112–118.

    CAS  Google Scholar 

  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15: 473–497.

    Article  CAS  Google Scholar 

  • Peters J.L. 1992. Photomorphogenetic mutants of higher plants. Ph.D. Thesis, Agricultural University Wageningen, The Netherlands.

    Google Scholar 

  • Pratt L.H. 1995. Phytochromes: differential properties, expression patterns and molecular evolution. Photochem. Photobiol., 61: 10–21.

    CAS  Google Scholar 

  • Pratt L.H., Cordonnier-Pratt M.-M., Kelmenson P.M., Lazarova G.I., Kubota T., Alba R.M. 1997. The phytochrome gene family in tomato (Solanum lycopersicum L.). Plant Cell Environ., 20: 672–677.

    Article  CAS  Google Scholar 

  • Quail P.H. 1994a. Phytochrome genes and their expression. In: Photomorphogenesis in Plants, ed. by R.E. Kendrick, G.H.M. Kronenberg, Kluwer Academic Publishers, Dordrecht: 71–104.

    Google Scholar 

  • Quail P.H. 1994b. Photosensory perception and signal transduction in plants. Curr. Opin. Gen. Develop., 4: 652–661.

    Article  CAS  Google Scholar 

  • Quail P.H. 1997. The phytochromes: a biochemical mechanism of signaling in sight? Bio-Essays 19: 571–579.

    CAS  Google Scholar 

  • Roshchina V.V. 1987. Action of acetylcholine agonists and antagonists on reactions of photosynthetic membranes. Photosynthetica 21: 296–300.

    CAS  Google Scholar 

  • Roshchina V.V., Mukhin E.N. 1985. Acetylcholinesterase activity in chloroplasts and acetylcholine effect on photochemical reactions. Photosynthetica 19: 164–171.

    CAS  Google Scholar 

  • Terry M.J. 1997. Phytochrome chromophore-deficient mutants. Plant Cell Environ., 20: 740–745.

    Article  CAS  Google Scholar 

  • Terry M.J., Kendrick R.E. 1996. The aurea and yellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J. Biol. Chem., 271: 21681–21686.

    Article  PubMed  CAS  Google Scholar 

  • Tretyn A., Bobkiewicz W., Tretyn M., Michalski L. 1987. The identification of acetylcholine and choline in oat seedlings by gas chromatography and nuclear magnetic resonance (NMR). Acta. Soc. Bot. Polon., 56: 499–511.

    CAS  Google Scholar 

  • Tretyn A., Kendrick R.E. 1991. Acetylcholine in plants: presence, metabolism and mechanism of action. Bot. Rev., 57: 33–73.

    Article  Google Scholar 

  • Tretyn A., Łukasiewicz-Rutkowska H., Kopcewicz J. 1997. Isolation, purification and identification of acetylcholine in Pharbitis nil seedlings. Acta Physiol. Plant., 19: 303–309.

    Article  CAS  Google Scholar 

  • Tretyn A., Tretyn M. 1990. Oscillations of acetylcholine in oat seedlings. Chronobiologia 17: 45–52.

    PubMed  CAS  Google Scholar 

  • Van Tuinen A., Hanhart C.J., Kerckhoffs L.H.J., Nagatani A., Boylan M.T., Quail P.H., Kendrick R.E., and Koornneef M. 1996. Analysis of phytochrome-deficient yellow-green-2 and aurea mutants of tomato. Plant J., 9: 173–182.

    Article  Google Scholar 

  • Van Tuinen A., Kerckhoffs L.H.J., Nagatani A., Kendrick R.E., Koornneef M. 1995. Far-red light-insensitive, phytochrome A-deficient mutants of tomato. Mol. Gen. Genet., 246: 133–141.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiśniewska, J., Tretyn, A. The effect of light on the level of acetylcholine in seedlings of the wild-type and phytochrome mutants of tomato (Lycopersicon esculentum Mill.). Acta Physiol Plant 21, 221–230 (1999). https://doi.org/10.1007/s11738-999-0036-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-999-0036-6

Key words

Navigation