Skip to main content
Log in

Some biochemical changes during leaf rolling in Ctenanthe setosa (Marantaceae)

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The changes in the levels of proline, sugar and soluble protein during leaf rolling and its relationship to osmotic adjustment were studied in laboratory conditions. Upon irrigation of plants which have rolled leaves, many sugar crystals occurred on the abaxial surface of the leaves in Ctenanthe setosa (Rosc.) Eichler. The sugar crystals were determined to have sucrose, glucose and fructose. The levels of reducing sugars and proline are higher in rolled leaves while soluble protein levels in rolled leaves are lower than those of unrolled leaves. It was found 1–3, 9–13, 16–21 and 24–28 crystals at degree of leaf rolling 23, 28, 47 and 52%, respectively. Finally, we found a significant correlation between the crystal number and degree of leaf rolling in Ctenanthe setosa. In addition, soluble sugars are found predominant accumulating solute in the plant and are of major importance as a contributor to osmotic adjustment during leaf rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates L.S., Waldren R. P., Teare I. D. 1973. Rapid determination of free proline for water stress studies. Plant Soil., 39: 205–207.

    Article  CAS  Google Scholar 

  • Binzel M. L., Hasegawa P. M., Rhodes D., Handa S., Handa A. K., Bressan R. A. 1987. Solute accumulation in tobacco cells adapted to NaCl. Plant Physiol., 84: 1408–1415.

    PubMed  CAS  Google Scholar 

  • Binzel M. L., Hess F. D., Bressan R. A., Hasegawa P. M. 1989. Mechanisms of adaptation to salinity in cultured glycophyte cells. In: Environmental Stress in Plants, ed. by J. H. Cherry, NATO ASI Series, Springer-Verlag Berlin Heidelberg: 139–158.

  • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cutler J. M., Shahan K. W., Steponkus P. L. 1980. Alteration of the internal water relations of rice in response to drought hardening. Crop Sci., 20: 307–310.

    Article  Google Scholar 

  • Dove L. D. 1968. Nitrogen distribution in tomato plants during drought (Lycopersicon esculentum M.). Phyton, 25: 49–52.

    Google Scholar 

  • Goodwin T. W., Mercer E. I. 1986. Introduction to plant biochemistry. Pergamon Press, Oxford-New York.

    Google Scholar 

  • Gzik A. 1996. Accumulation of proline and pattern of α-amino acids in sugar beet plants in response to osmotic, water and salt stress. Env. Exp. Bot., 36: 29–38.

    Article  CAS  Google Scholar 

  • Handa S., Bressan R. A., Handa A. K., Carpita N. C., Hasegawa P. M. 1983. Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol., 73: 834–843.

    PubMed  CAS  Google Scholar 

  • Handa A. K., Hasegawa P. M., Bressan R. A. 1986. Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol., 80: 935–945.

    Google Scholar 

  • Hanson A. D. 1980. Interpreting the metabolic responses of plants to water stress. Hortic., Sci., 15: 623–629.

    CAS  Google Scholar 

  • Harborne J. B. 1973. Phytochemical Methods. Chapman and Hall, London.

    Google Scholar 

  • Hasegawa P. M., Bressan R. A., Handa S., Handa A. K. 1984. Cellular mechanisms of tolerance to water stress. HortSci., 19: 371–377.

    CAS  Google Scholar 

  • Hsiao T. C. 1970. Rapid changes in levels of polyribosomes in Zea mays in response to water stress. Plant Physiol., 46: 281–285.

    PubMed  CAS  Google Scholar 

  • Hsiao T. C., O’Toole J. C., Yambao E. B., Turner N. C. 1984. Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiol., 75: 338–341.

    Article  PubMed  CAS  Google Scholar 

  • Huff A.K., Ross C.W. 1975. Promotion of radish cotyledon enlargement and reducing sugar content by zeatin and red light. Plant Physiol., 56: 429–433.

    PubMed  CAS  Google Scholar 

  • Jones M. M., Rawson H. M. 1979. Influence of rate of development of leaf water deficits upon photosynthesis, leaf conductance, water use efficiency, and osmotic potential in Sorghum. Physiol. Plant., 45: 103–111.

    Article  Google Scholar 

  • Kirchoff B. K., Kennedy H. 1985. Foliar, nonstructural nectaries in the Marantaceae. Can. J. Plant Physiol., 63: 1785–1788.

    Google Scholar 

  • Laemmli U. K. 1970. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature., 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lee-Stadelmann O. Y., Stadelmann E. J. 1976. Cell permeability and water stress. In: Water and Plant Life: Problems and Modern Approaches, ed. by O. L. Lange, L. Kappen, E. D. Schulze, Springer-Verlag, Berlin: 268–280.

    Google Scholar 

  • Ludlow M. M. 1980. Adaptive significance of stomatal responses to water stress. In: Adaptation of Plants to Water and High Temperature Stress, ed. by N. C. Turner, P. J. Kramer, Wiley Interscience, New York: 123–138.

    Google Scholar 

  • Meyer R. F., Boyer J. S. 1972. Sensitivity of cell division and cell elongation to low water potentials in soybean hypocotyls. Planta., 108: 77–87.

    Article  CAS  Google Scholar 

  • Omarova E. I., Bogdanova E. D., Polimbetova F. A. 1995. Regulation of water loss by the leaves of soft winter wheat with different organization of leaf structure. Fiziol. Rast., 42: 383–385.

    CAS  Google Scholar 

  • O’Toole J. C., Cruz R. T. 1980. Response of leaf water potential, stomatal resistance, and leaf water to stress. Plant Physiol., 65: 428–432.

    PubMed  Google Scholar 

  • Premachandra G. S., Saneoka H., Fujita K., Ogata S. 1993. Water stress and potassium fertilization in field grown maize (Zea mays L.): Effect of leaf water relations and leaf rolling. J. Agr. Crop Sci., 170: 195–201.

    Article  CAS  Google Scholar 

  • Ross A. I. 1959. Dinitrophenol Method for Reducing Sugars. First Edition, The Avi. Publishing Company, Wesport.

    Google Scholar 

  • Sewell P. A. Clarke B. 1987. Chromatographic Separations. Thomas Polytechnic, London.

    Google Scholar 

  • Sharp R. E., Davies W. J. 1979. Solute regulation and growth by roots and shoots of water stressed maize plants. Planta., 147: 43–49.

    Article  CAS  Google Scholar 

  • Singh T. N., Paleg L. G., Aspinall D. 1973. Stress metabolism. III. Variations in response to water deficit in the barley plant. Aust. J. Biol. Sci., 26: 65–76.

    CAS  Google Scholar 

  • Sivaramakrishnan S., Patell V. Z., Flower D. J., Peacock J. M. 1988. Proline accumulation and nitrate reductase activity in contrasting Sorghum lines during mid-season drought stress. Physiol. Plant., 74: 418–426.

    Article  CAS  Google Scholar 

  • Turgut R., Kadioglu A. 1998. The effect of drought, temperature and irradiation on leaf rolling in Ctenanthe setosa. Biol. Plant. 41(4): 629–633.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadioğlu, A., Turgut, R. Some biochemical changes during leaf rolling in Ctenanthe setosa (Marantaceae) . Acta Physiol Plant 21, 209–214 (1999). https://doi.org/10.1007/s11738-999-0034-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-999-0034-8

Key words

Navigation