Skip to main content
Log in

Studies on morphology and metabolism of prothalli during GA3-induced formation of antheridia in Anemia phyllitidis

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In Schizaeaceae ferns, including Anemia phyllitidis, formation of antheridia is known to be induced by exogenously applied gibberellic acid. Also present studies show that GA3 (10−5 mol·dm−3) modifies the development of gametophytes of Anemia phyllitidis. Simultaneously with formation of antheridia, they exhibit lower number of cells but only slightly lowered profile areas and lengths of prothalli. Growth in size of individual cells compensates for lowered division frequency. Cytophotometric measurements reveal no essential changes in the DNA content in vegetative cells of the control and GA3-stimulated gametophytes. It remains at haploid level and therefore it is assumed that cell cycle is blocked at G1 phase.

Application of GA3 increases the total amount of proteins. CZE (Capillary Zone Electrophoresis) separation of peptides extracted from control and GA3-treated prothalli indicates the differences in the ratio of their particular forms. In GA3-treated gametophytes the activities of acid and basic phosphatases, contents of carbohydrates (glucose, starch), chlorophyll, the number of chloroplasts and dry mass of prothalli are increased. GA3-intensified metabolism, evidenced in gametophytes of A. phyllitidis, may be interpreted as a stimulatory mechanism which influences metabolic pathways involved in forming, developing and maturing of male sex organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidases in Beta vulgaris. Plant Physiol. 24: 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antikainen M., Pihakaski S. 1994. Early development in RNA, protein, and sugar levels during cold stress in winter rye (Secale cereale) leaves. Ann. Bot. 74: 335–341.

    Article  CAS  Google Scholar 

  • Bieleski R.L. 1974. Development of an externally-located alkaline phosphatase as a response to phosphorus deficiency. In R. L. Bieleski, A. R. Ferguson and M. M. Cresswell [eds.], Mechanisms of Regulation of Plant Growth, 165–170. Bull. 12. Royal Society New Zeland, Wellington.

    Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Bradley P.M. 1991. Plant hormones do have a role in controlling growth and development of algae. J. Phycol. 27: 317–321.

    Article  CAS  Google Scholar 

  • Bryant J.A., Cuming A.C. 1993. Molecular control of development. In P. J. Lea and R. C. Leegood [eds], Plant Biochemistry and Molecular Biology, 241–274. John Wiley & Sons Press.

  • Ferens M., Morawiecka B. 1984. Acid phosphatases of higher plants. Post. Bioch. 30: 461–475 (in Polish).

    CAS  Google Scholar 

  • Guttenberger H. 1987. Nuclear DNA content and number of chloroplasts in Elodea canadensis after treatment with growth regulators. Phyton. 27: 47–54.

    CAS  Google Scholar 

  • Huttly A.K., Phillips A.L. 1995. Gibberellin-regulated plant genes. Physiol. Plant. 95: 310–317.

    Article  CAS  Google Scholar 

  • Jusaitis M., Paleg L.G., Aspinall D. 1982. The influence of gibberellic acid and temperature on the growth rate of Avena sativa in stem segments. Plant Physiol. 70: 532–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko J., Kuroiwa M., Kazuhiko A., Okuda S., Kamio Y., Izaki K. 1990. Purification and properties of acid phosphatases from axes and cotyledons of germinating soybean. Agric. Biol. Chem. 54: 745–751.

    CAS  Google Scholar 

  • Katsu N., Kamisaka S. 1981. Effect of gibberellic acid and metabolic inhibitors of DNA and RNA synthesis on hypocotyl elongation and cell wall loosening in dark-grown lettuce seedlings. Plant Cell Physiol. 22: 327–331.

    CAS  Google Scholar 

  • Kaźmierczak A., Maszewski J. 1997. Inhibition of GA3-induced antheridiogenesis in Anemia phyllitidis by peptidic extracts from male sex organs of Chara. Acta Physiol. Plant. 19: 269–276.

    Article  Google Scholar 

  • Kwiatkowska M. 1995. Effect of symplasmic isolation and antigibberellin treatment on morphogenesis in Chara. Folia Histochem. Cytobiol. 33: 133–137.

    CAS  PubMed  Google Scholar 

  • Maszewski J. 1991. Endopolyploidization patterns in non-generative cells in mono- and dioecious Chara spp. (Characeae) with different DNA C-values. Plant System. Evol. 177: 39–52.

    Article  Google Scholar 

  • Miller H. J. 1968. Fern gametophytes as experimental material. Bot. Review 34: 361–440.

    Article  CAS  Google Scholar 

  • Mohamed Y., Capesius I. 1980. Effect of gibberellic acid and FdUrd on quantity and quality of DNA during elongation growth in Pisum sativum. Zentralbl. Pflanzenphysiol. 98: 15–23.

    Article  CAS  Google Scholar 

  • Mohr H. 1956. Die Abhängigkeit des Protonemawachstums und der Protonemapolarität bei Farnen von Licht. Planta 47: 127–158.

    Article  CAS  Google Scholar 

  • Näf U. 1966. On dark-germination and antheridium formation in Anemia phyllitidis. Physiol. Plant. 19: 1079–1088.

    Article  Google Scholar 

  • Näf U., Nakanishi K., Endo M. 1975. On the physiology and chemistry of fern antheridiogens. Bot. Review 41: 315–359.

    Article  Google Scholar 

  • Pitt D., Gaplin M. 1971. Increase in ribonuclease activity following mechanical damage to leaf and tuber tissue of Solanum tuberosum L. Planta (Berl.) 101: 317–332.

    Article  CAS  Google Scholar 

  • Raghavan V. 1977. Gibberellic acid-induced germination of spores of Anemia phyllitidis: Authoradiographic study of the timing and regulation of nucleic acid and protein synthesis in relation to cell morphogenesis. J. Cell Sci. 23: 85–100.

    CAS  PubMed  Google Scholar 

  • Raghavan V. 1993. Differential expression of nuclear and plastid genes induced by red light and gibberellic acid during germination of spores of the fern Anemia phyllitidis. Am. J. Bot. 80: 385–390.

    Article  CAS  Google Scholar 

  • Rappaport L. 1980. Plant growth hormones: internal control points. Bot. Gaz. 141: 125–130.

    Article  CAS  Google Scholar 

  • Schraudolf H. 1962. Die Wirkung von Phytohormonen auf Keimung und Entwicklung von Farnprothallien I. Auslösung der Antheridienbildung und Dunkelkeimung bei Schizaeaceen durch Gibberellinsäure. Biol. Zentralbl. 81: 731–740.

    Google Scholar 

  • Schraudolf H. 1964. Relative activity of gibberellins in antheridium induction in Anemia phyllitidis. Nature 201: 98–99.

    Article  CAS  Google Scholar 

  • Schraudolf H. 1966. Die Wirkung von Phytohormonen auf Keimung und Entwicklung von Farnprothallien II. Analyse der Wachselbeziehung zwischen Gibberellinkoncentration, Antheridienbildung und Physiologichem Alter der Prothalliumzellen von Anemia phyllitidis. Planta 68: 335–352.

    Article  CAS  PubMed  Google Scholar 

  • Takeno K., Furuya M. 1977. Inhibitory effect of gibberellins on archegonial differentiation in Lygodium japonicum. Physiol. Plant. 39: 135–138.

    Article  CAS  Google Scholar 

  • Vasil I. K. 1973. Morphogenetic, histochemical and ultrastructural effects of plant growth substances in vitro. Biochem. Pflanzen Physiol. 164: 58–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaźmierczak, A. Studies on morphology and metabolism of prothalli during GA3-induced formation of antheridia in Anemia phyllitidis . Acta Physiol Plant 20, 277–283 (1998). https://doi.org/10.1007/s11738-998-0059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-998-0059-4

Key words

Navigation