Skip to main content
Log in

Glutamate dehydrogenase in higher plants

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Achhireddy N.R., Vann D.R., Fletcher J.S., Beevers L. 1983. The influence of methionine sulfoximine on photosynthesis and nitrogen metabolism in excised pepper leaves. Plant Sci. Lett. 32, 73–78.

    Article  CAS  Google Scholar 

  • Amos J.A., Scholl R.L. 1997. Effect of growth temperature on leaf nitrate reductase, glutamine synthetase and NADH glutamate dehydrogenase of juvenile maize genotypes. Crop Sci. 17, 445–448.

    Google Scholar 

  • Anderson J.W., Done J. 1978. Light-dependent assimilation of nitrite by isolated pea chloroplasts. Plant Physiol. 61, 692–697.

    PubMed  CAS  Google Scholar 

  • Assche F. V., Clijsters H. 1990. Effect of metals on enzyme activity in plants. Plant Cell Env., 13, 195–206.

    Article  Google Scholar 

  • Barash I. B., Sadon T., Mor H., 1973. Induction of a specific isoenzyme of glutamate dehydrogenase by ammonia in oat leaves. Nature New Biol. 244, 150–152.

    Article  PubMed  CAS  Google Scholar 

  • Barash I., Mor H., Sadon T. 1976. Isoenzymes of glutamate dehydrogenase from oat leaves: properties and light effect on synthesis. Plant Cell Physiol. 17, 493–500.

    CAS  Google Scholar 

  • Berger M. G., Fock H. P., 1983. Effects of methionine sulfoximine and glycine on nitrogen metabolism of maize leaves in the light. Aust. J. Plant Physiol. 10, 187–194.

    Article  CAS  Google Scholar 

  • Bielawski W., Rafalski A. 1979. Glutamate dehydrogenase and glutamine synthetase in rye seedlings supplied with ammonium and nitrate. Acta Biochim. Pol. 26, 383–396.

    CAS  Google Scholar 

  • Bielawski W., KĂczkowski J. 1984a. Pathways of ammonia assimilation in rye seedlings at different concentration of NH4+.I. The enzyme activities and level of metabolities. Acta Physiol. Plant 6: 145–158.

    CAS  Google Scholar 

  • Bielawski W., KĂczkowski J. 1984b. Pathways of ammonia assimilation in rye seedlings at different concentration of NH4+. II. Kinetic studies with 15N. Acta Physiol. Plant. 6: 159–169.

    CAS  Google Scholar 

  • Bielawski W. 1993. Distribution of glutamine synthetase isoforms in triticale seedling leaves. Acta Physiol. Plant. 16, 303–308.

    Google Scholar 

  • Billard J.P., Bocaund J. 1980. Effect of NaCl on the activities of glutamate synthase from halophyte Suaeda Maritima and from a glycophyte Phaseolus vulgaris. Phytochemistry 19, 1939–1942.

    Article  CAS  Google Scholar 

  • Blackwell, R. D., Murray, A. J. S and Lea P. J. 1987. The isolation and characterisation of photorespiratory mutants of barley and pea. In: Progress in Photosynthesis Research, vol. 3, ed. J. Biggins, 625–628.

  • Brouquisse R., James F., Pradet A., Raymond P. 1992. Aspargine metabolism and nitrogen distribution during protein degradation in sugar-starved maize root tips. Planta 188, 384–395.

    Article  CAS  Google Scholar 

  • Burzyński M., 1990. Activity of some enzymes involved in NO3 assimilation in cucumber seedlings treated with lead or cadmium. Acta Physiol. Plant. 12, 105–110.

    Google Scholar 

  • Burzyński M., Buczek J. 1997. The effect of Cu2+ on uptake and assimilation of ammonium by cucumber seedlings. Acta Physiol. Plant. 19, 3–8.

    Google Scholar 

  • Cammaerts D., Jacobs M. 1983. A study of the polymorphism and the genetic control of the glutamate dehydrogenase isozymes in Arabidopsis thaliana. Plant Sci. Lett. 31, 65–73.

    Article  CAS  Google Scholar 

  • Cammaerts D., Jacobs M. 1985. A study of the role of glutamate dehydrogenase in the nitrogen metabolism of Arabidopsis thaliana. Planta, 163, 517–526.

    Article  CAS  Google Scholar 

  • Chavez S., Reyes J.C., Chauvat F., Florencio F.J., Candau P. 1995. The NADP-glutamate dehydrogenase of the cyanobacterium Synechocystis 6803: Cloning transcryptional analysis and disruption of the gdhA gene. Plant Mol. Biol. 28, 173–188.

    Article  PubMed  CAS  Google Scholar 

  • Chou K.H., Splittstoesser W.E. 1972. Glutamate dehydrogenase from pumpkin cotyledons: Characterization and isozymes. Plant Physiol. 49, 550–554.

    PubMed  CAS  Google Scholar 

  • Consalvi G., Chiaraluce R., Politi L., Vaccaro R., De Rosa M., Scandurra R. 1991. Extremelly thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biochem. 202, 1189–1196.

    CAS  Google Scholar 

  • Das R., Sharma A.K., Sopory S.K. 1989. Regulation of NADH-glutamate dehydrogenase activity by phytochrome, calcium and calmodulin in Zea mays. Plant Cell Physiol. 30, 317–323.

    CAS  Google Scholar 

  • Dembiński E. 1994. Asymilacja i metabolizm azotu w roślinach. Postępy Nauk Rolniczych. 1/94, 103–114.

    Google Scholar 

  • Duffus C.M., Rosie R. 1978. Metabolism of ammonium jon and glutamate in relation to nitrogen supply and utilization during grain development in barley. Plant Physiol. 61, 570–574.

    PubMed  CAS  Google Scholar 

  • Fawole M.O. 1977. Glutamate dehydrogenase from Vicia faba. Can. J. Bot. 55, 1850–1856.

    CAS  Google Scholar 

  • Fentem P.A., Lea P.J., Stewart G.R. 1983. Ammonia assimilation in the roots of nitrate- and ammonia-grown Hordeum vulgare. Plant Physiol. 71, 496–501.

    PubMed  CAS  Google Scholar 

  • Ferreira R., Davies D. 1989. Nitrogen supply and light intensity on properties of glutamate dehydrogenase and glycollate oxidase in Lemna. Phytochemistry 28, 349–354.

    Article  CAS  Google Scholar 

  • Fox G.G., Ratcliffe R.G., Robinson S.A., Stewart G.R. 1995. Evidence for deamination by glutamate dehydrogenase in higher plants. Can. J. Bot. 73, 1112–1115.

    CAS  Google Scholar 

  • Givan C.V., Joy K.W., Kleczkowski L.A. 1988. A decade of photorespiratory nitrogen cycle. Trends Biochem. Sci. 13, 433–437.

    Article  PubMed  CAS  Google Scholar 

  • Groat R.G., Soulen J.K. 1977. Kinetic properties of L-glutamate dehydrogenase from pea root in mitochondria. Plant Physiol. Suppl. 59, 70.

    Google Scholar 

  • Gulati A., Jaiwal P.K. 1996. Effect of NaCl on nitrate reductase, glutamate dehydrogenase and glutamate synthase in Vigna radiata calli. Biol. Plant. 38, 177–183.

    CAS  Google Scholar 

  • Hadzi-Taskovic Sukalovic V. 1984. Activity of nitrogen metabolism enzymes in the process of kernel development in different maize genotypes. FEBS Letters 171, 59–62.

    Article  Google Scholar 

  • Hartmann T., Nagel M., Ilert H. 1973. Organspecifische multiple formen der glutamat dehydrogenase in Medicago sativa. Planta 111, 119–128.

    Article  CAS  Google Scholar 

  • Hartmann T., Ehmke A. 1980. Role of mitochondrial glutamate dehydrogenase in the reasimilation of ammonia produced by glycine-serine transformation. Planta 149, 207–208.

    Article  CAS  Google Scholar 

  • Hecht U., Delmüller R., Schmit S., Mohr H. 1988. Action of light, nitrate and ammonium on the level of NADH- and ferredoxin — dependent glutamate synthases in the cotyledons of mustard seedlings. Planta 175, 130–138.

    Article  CAS  Google Scholar 

  • Heeschen V., Gerendas J., Richter C.P., Rudolph H. 1997. Glutamate dehydrogenase of Sphagnum. Phytochemistry 45, 881–887.

    Article  CAS  Google Scholar 

  • Itagaki T., Dry I.B., Wiskich J. 1988. Purification and properties of NAD-glutamate dehydrogenase from turnip mitochondria. Phytochemistry 27, 3373–3378.

    Article  CAS  Google Scholar 

  • Itagaki T., Dry I.B., Wiskich J.T. 1990. Effects of calcium on NAD(H)-glutamate dehydrogenase from turnip (Brassica rapa L.) mitochondria. Plant Cell Physiol. 31, 993–997.

    CAS  Google Scholar 

  • James F., Brouquisse R., Pradet A., Raymond P. 1993. Changes in proteolytic activities in glucose-starved maize root tips. Regulation by sugars. Plant Physiol. Biochem. 31, 845–856.

    CAS  Google Scholar 

  • Johansson L., Larsson C.M. 1986. Relationship between inhibition of CO2 fixation and glutamine synthetase inactivation in Lemna gibba L. Treated with L-methionine-D,L-sulphoximine. J. Exp. Bot. 37, 221–229.

    Article  CAS  Google Scholar 

  • Joy K. W. 1988. Ammonia, glutamine and asparagine: a carbon-nitrogen interface. Can J. Bot. 66, 2103–2109.

    CAS  Google Scholar 

  • Joy K. W., Blackwell R. D., Lea P. J. 1992. Assimilation of nitrogen in mutants lacking enzymes of the glutamate synthase cycle. J. Exp. Bot. 43, 139–145.

    Article  CAS  Google Scholar 

  • Kang S.M., Titus J. S. 1980. Activity profiles of enzymes involved in glutamine and glutamate metabolism in the apple during autumnal senescence. Physiol. Plant. 50, 291–297.

    Article  CAS  Google Scholar 

  • Kar M., Feierabend J. 1984. Changes in the activity of enzymes involved in amino acids metabolism during the senescence of detached wheat leaves. Physiol. Plant. 62, 39–44.

    Article  CAS  Google Scholar 

  • Kendall, A. C., Wallsgrove R. M., Hall N. P., Turner J. C. and Lea P. J. 1986. Carbon and nitrogen metabolism in barley mutants lacking ferredoxin-dependent glutamate synthase. Planta 168, 316–323.

    Article  CAS  Google Scholar 

  • Keys A.T., Bird I.F., Cornelius M.J., Lea P.J., Walsgrove R.M., Miflin B.J. 1978. Photorespiratory nitrogen cycle. Nature 275, 741–743

    Article  Google Scholar 

  • Lauriere C., Daussant J. 1984. Identification of the ammonium-dependent isoenzyme of glutamate dehydrogenase as the form induced by senescence or darkness stress in the first leaf of wheat. Physiol. Plant. 58, 89–92.

    Article  Google Scholar 

  • Lea P.J., Thurman D.A. 1972. Intracellular location and properties of plant L-glutamate dehydrogenases. J. Exp. Botany 23, 440–449.

    Article  CAS  Google Scholar 

  • Lea P.J., Miflin B.J. 1974. Alternative route for nitrogen assimilation in higher plants. Nature 251, 614–616.

    Article  PubMed  CAS  Google Scholar 

  • Lea P. J., Robinson S. A., Stewart G. R. 1990. The enzymology and metabolism of glutamine, glutamate and aspargine. In: The Biochemistry of plants, vol. 16, ed. Miflin B. J., and Lea P. J. Academic Press, San Diego, 121–159.

    Google Scholar 

  • Lea P. J. 1993. Nitrogen metabolism. In: Plant Biochemistry and Molecular Biology. ed. Lea P. J. and Leegood R. C., John Wiley & Sons Ltd. 155–180.

  • Lee D.W. 1973. Glutamate dehydrogenase isoenzymes in Ricinus communis seedlings. Phytochemistry 12, 2631–2634.

    Article  CAS  Google Scholar 

  • Leegood R. C. 1993. The Calvin cycle and photorespiration. In: Plant Biochemistry and Molecular Biology. ed. Lea P. J. and John Wiley & Sons Ltd. 41–42.

  • Lenee P., Chupeau Y. 1989. Development of nitrogen assimilating enzymes during growth of cells derived from protoplasts of sunflower and tobacco. Plant Sci. 59, 109–117.

    Article  CAS  Google Scholar 

  • Leon E., de la Haba P., Maldonado J.M. 1990. Changes in the levels of the enzymes involved in ammonia assimilation during the development of Phaseolus vulgaris seedlings. Effects of exogenous ammonia. Physiol. Plant. 80, 20–26.

    Article  CAS  Google Scholar 

  • Lewis O., James D.M., Hewitt E.J. 1982. Nitrogen assimilation in barley (Hordeum vulgare L. Cv Mazurka) in response to nitrate and ammonium nutrition. Ann. Bot. 49, 39–49.

    CAS  Google Scholar 

  • Loulakakis K.A., Roubelakis-Angelakis K.A. 1990. Intracellular localization and properties of NADH-glutamate dehydrogenase from Vitis vinifera L.: Purification and characterization of the major leaf isoenzyme. J. Exp. Bot. 41, 1223–1230.

    Article  CAS  Google Scholar 

  • Loulakakis K.A., Roubelakis-Angelakis K.A. 1991. Plant NAD(H)-glutamate dehydrogenase consists of two subunit polipeptides and their participation in the seven isoenzymes occurs in an ordered ratio. Plant Physiol. 97, 104–111.

    PubMed  CAS  Google Scholar 

  • Loulakakis K.A., Roubelakis-Angelakis K.A. 1992. Ammonium induced increase in NADH-glutamate dehydrogenase activity is caused by de novo synthesis of the a-subunit. Planta 187, 322–327.

    Article  CAS  Google Scholar 

  • Loulakakis K. A., Roubelakis-Angelakis K. A., Kanellis A.K. 1994. Regulation of glutamate dehydrogenase and glutamine synthetase in avocado fruit during development and rippening. Plant. Physiol. 106, 217–222.

    PubMed  CAS  Google Scholar 

  • Loulakakis K.A., Roubelakis-Angelakis K.A. 1996. The seven NAD(H)-glutamate dehydrogenase izoenzymes exhibit similar anabolic and catabolic activities. Physiol. Plant. 96, 29–35.

    Article  CAS  Google Scholar 

  • Maestri E., Restivo F.M., Gulli M., Tassi F. 1991. Glutamate dehydrogenase regulation in callus cultures of Nicotiana plumbagifolia: effect of glucose feeding and carbon source starvation on the isoenzymatic pattern. Plant, Cell and Environ. 14, 613–618.

    Article  CAS  Google Scholar 

  • Magalhaes J.R., Ju G.C., Rich P.J., Rhodes D. 1990. Kinetics of 15NH4+ assimilation in Zea mays L. Preliminary studies with a glutamate dehydrogenase (GDH1) Null mutant. Plant Physiol. 94, 647–656.

    PubMed  CAS  Google Scholar 

  • Mazurowa H., Ratajczak W., Ratajczak L. 1980. Glutamate dehydrogenase characteristics in the organs and root nodules of Lupinus luteus L. Acta Physiol. Plant. 2, 167–177.

    CAS  Google Scholar 

  • Melo-Oliveira R., Oliveira I.C., Coruzzi G.M. 1996. Arabidopsis mutant analysis and gene regulation define a non-redundant role for glutamate dehydrogenase in nitrogen assimilation. Proc. Nation. Acad. Sci. USA 93, 4718–4723.

    Article  CAS  Google Scholar 

  • Miflin B. J., Lea P. J. 1980. Ammonia assimilation. In: The Biochemistry of Plants ed. Miflin B. J. vol. 5. Academic Press, New York, 169–202.

    Google Scholar 

  • Misono H., Goto N., Nagasaki S. 1985. Purification, crystalization and properties of NADP+-specific glutamate dehydrogenase from Lactobacillus fermentum. Agric. Biol. Chem. 49, 117–123.

    CAS  Google Scholar 

  • Mocquot B., Vangronsveld J., Clijsters H., Mench M. 1996. Copper toxicity in young maize (Zea mays L.) plant: effects on growth, mineral and chlorophyl contents and enzyme activities. Plant and Soil 182, 287–300.

    CAS  Google Scholar 

  • Moller J. M., Rasmusson A. G. 1998. The role of NADP in the mitochondrial matrix. Trends in Plant Sci. 3, 21–27.

    Article  Google Scholar 

  • Munoz-Blanco J., Cardenas J. 1989. Changes in glutamate dehydrogenase activity of Chlamydomonas reinhardtii under different trophic and stress conditions. Plant Cell Envir. 12, 173–182.

    Article  CAS  Google Scholar 

  • Nanda B.B., Mali P.C., Lodh S.B. 1991. Glutamate dehydrogenase activity and isoenzymes, protein, and soluble amino acids in developing grains of high and low protein rice. Cereal Chem. 68, 351–353.

    CAS  Google Scholar 

  • Oaks A., Stulen I., Jones K.E., Winspear M.J., Misra S., Boesel I.L. 1980. Enzymes of nitrogen assimilation in maize roots. Planta 148, 477–484.

    CAS  Google Scholar 

  • Oaks A. 1994. Primary nitrogen assimilation in higher plants and its regulation. Can J. Bot. 72, 739–750.

    CAS  Google Scholar 

  • Oaks A. 1995. Evidence for deamination by glutamate dehydrogenase in higher plants: reply. Can. J. Bot. 73, 1116–1117.

    CAS  Google Scholar 

  • Orzechowski S., Kwinta J., Gworek B., Bielawski W. 1997. Biochemical indicators of environmental contaminations with heavy metals. Pol. J. Env. Stud. 6, 27–32.

    Google Scholar 

  • Pahlich E., Joy K.W. 1971. Glutamate dehydrogenase from pea roots: Purification and properties of the enzyme. Can. J. Bioch. 49, 127–138.

    Article  CAS  Google Scholar 

  • Peeters K.M.U., Van Laere A.J. 1992. Ammonium and amino acids metabolism in excised leaves of wheat (Triticum aestivum) senescing in the dark. Physiol. Plant. 84, 243–249.

    Article  CAS  Google Scholar 

  • Perez-Soba M., Dueck T.A., Puppi G., Kuiper P.J.C. 1995. Interactions of elevated CO2, NH3 and O3 on mycorrhizal infection, gas exchange and N metabolism in saplings of Scots pine. Plant-Soil 176, 107–116.

    Article  CAS  Google Scholar 

  • Pryor A.J. 1979. Mapping of glutamic dehydrogenase (Gdh) on chromosome 1, 20.1 recombination units distal to Adh 1. Maize Genet. Coop. Newsl. 53, 25–26.

    Google Scholar 

  • Psenakowa T., Gasparikova O., Niznanska A. 1976. Nitrate reductase and glutamate dehydrogenase levels in roots and leaves of maize seedlings. Biol. Plant 18, 283–289.

    Google Scholar 

  • Purnell M.P., Stewart G. R., Botella J.R. 1997. Cloning and characterisation of a glutamate dehydrogenase cDNA from tomato (Lycopersicum esculentum L.). Gene. 186, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Quetz P.C., Tischner R., Lorenzen H. 1982. Changes in the activity of enzymes involved in nitrogen metabolism in maize seedlings dependent on different nitrogen sources. Biochem. Physiol. Pflanzen 177, 567–576.

    CAS  Google Scholar 

  • Ramanjulu S., Sudhakar C. 1996. Drought tolerance is partly related to amino acid accumulation and ammonia assimilation: a comparative study in two mulberry genotypes differing in drought sensitivity. J. Plant Physiol. 150, 345–350.

    Google Scholar 

  • Ratajczak L., Ratajczak W., Mazurowa H., Woźny A. 1979. Localization of glutamate dehydrogenase and glutamate synthase in roots and nodules of Lupinus seedlings. Biochem. Physiol. Plfanzen 174, 289–295.

    CAS  Google Scholar 

  • Ratajczak L., Ratajczak W., Mazurowa H. 1981. The effect of different carbon and nitrogen sources on the activity of glutamine synthetase and glutamate dehydrogenase in lupine embryonic axes. Physiol. Plant. 51, 277–280.

    Article  CAS  Google Scholar 

  • Ratajczak L., Koroniak D., Mazurowa H., Ratajczak W., Prus-Głowacki W. 1986. Glutamate dehydrogenase isoform in lupine roots and nodules. Immunological studies. Physiol. Plant. 67, 685–689.

    CAS  Google Scholar 

  • Ratajczak W., Lehmann T., Polcyn W., Ratajczak L. 1996. Metabolism of amino acids in germinating yellow lupine seeds. Acta Physiol. Plant. 18, 13–18.

    CAS  Google Scholar 

  • Rathnam C. K. M., Edwards G.E. 1976. Distribution of nitrate-assimilating enzymes between mesophyl protoplasts and bundle sheath cells in leaves of three groups of C4 plants. Plant Physiol. 57, 881–885.

    PubMed  CAS  Google Scholar 

  • Robinson S.A., Slade A.P., Fox G.G., Phillips R., Ratcliffe R.G., Stewart G.R. 1991. The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol. 95, 809–816.

    Google Scholar 

  • Robinson S.A., Stewart G.R., Phillips R. 1992. Regulation of glutamate dehydrogenase in relation to carbon limitation and protein catabolism in carrot cell suspension cultures. Plant Physiol. 98, 1190–1195.

    PubMed  CAS  Google Scholar 

  • Rogoziński J., Godlewska E., KĂczkowski J. 1990. Nitrate reductase activity in rye, wheat and Triticale seedlings. Acta Physiol. Plant. 12, 75–80.

    Google Scholar 

  • Sadunishvili T., Gvarliani N., Nutsubidze N., Kvesitadze G. 1996. Effect of methionine sulfoximine on nitrogen metabolism and externally supplied ammonium assimilation in kidney bean. Ecotoxicology and Environmental Safety. 34, 70–75.

    Article  PubMed  CAS  Google Scholar 

  • Sahulka J., Lisa L. 1980. Effects of some disaccharides, hexoses and pentoses on nitrate reductase, glutamine synthetase and glutamate dehydrogenase in excised pea roots. Physiol. Plant. 50, 32–36.

    Article  CAS  Google Scholar 

  • Sainis J.K., Sane P.V. 1978. Relative distribution of nitrogen assimilating enzymes in leaves and developing fruiting bodies of Cajanus and beans. J. Plant Physiol. 86, 107–111.

    CAS  Google Scholar 

  • Sakakibara H., Fujii K., Sugiyama T. 1995. Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol. 36, 789–797.

    PubMed  CAS  Google Scholar 

  • Sechley K.A., Yamaya T., Oaks A. 1992. Compartmentation of nitrogen asymilation in higher plants. Int. Rev. Cyt. 134, 85–161.

    Article  CAS  Google Scholar 

  • Shephard D.V., Thurman D.A. 1973. Effect of nitrogen source upon the activity of L-glutamate dehydrogenase of Lemna gibba. Phytochemistry 12, 1937–1946.

    Article  Google Scholar 

  • Simpson R.J., Dalling M.J. 1981. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). III. Enzymology and transport of amino acids from senescing flag leaves. Planta 151, 447–456.

    Article  CAS  Google Scholar 

  • Singh R.P., Srivastava H.S. 1982. Glutamate dehydrogenase activity and assimilation of inorganic nitrogen in maize seedlings. Biochem. Physiol. Plfanzen. 177, 633–642.

    CAS  Google Scholar 

  • Singh R.P., Srivastava H.S. 1983. Regulation of glutamate dehydrogenase activity by amino acids in maize seedlings. Physiol. Plant. 57, 549–554.

    Article  CAS  Google Scholar 

  • Somerville C. R., Ogren W. L. 1980. Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature 286, 257–259.

    Article  CAS  Google Scholar 

  • Srivastava H.S., Singh R.P. 1987. Role and regulation of L-glutamate dehydrogenase activity in higher plants. Phytochemistry 26, 597–610.

    Article  CAS  Google Scholar 

  • Stone S.R., Copeland L., Heyde E. 1980. Glutamate dehydrogenase of Lupin nodules: Kinetics of the deamination reaction. Arch. Bioch. Biophys. 199, 550–559 and 560–571.

    Article  CAS  Google Scholar 

  • Subhashini K., Reddy G.M. 1990. Effect of salt stress on enzyme activities in callus culture; application in crop improvement. Indian J. Exp. Biol. 28, 277–279.

    CAS  Google Scholar 

  • Syntichaki K.M., Loulakakis K.A., Roubelakis-Angelakis K.A. 1996. The amino acid sequence similarity of plant glutamate dehydrogenase to the extermophilic archaeal enzyme conforms to its stress-related function. Gene 168, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Tassi F., Restivo F. M., Puglisi P. P., Cacco G. 1984. Effect of glucose on glutamate dehydrogenase and acid phosphatase and its reversal by cyclic adenosine 3′5′-monophosphate in single cell cultures of Asparagus officinalis. Physiol. Plant 60, 61–64.

    Article  CAS  Google Scholar 

  • Thomas H. 1978. Enzymes of nitrogen mobilization in detached leaves of Lolium temulentum during senescence. Planta 142, 161–169.

    Article  CAS  Google Scholar 

  • Turano F.J., Dashner R., Upadhyaya A., Caldwell C.R. 1996. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Plant. Physiol. 112, 1357–1364.

    PubMed  CAS  Google Scholar 

  • Turano F.J., Thakkar S.S., Fang-Tung, Weiseman J.M., Fang T. 1997. Characterization and expresion of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol. 113, 1329–1341.

    Article  PubMed  CAS  Google Scholar 

  • Wallsgrove R. M., Turner J. C., Hall N. P., Kendally A. C., Bright S. W. J. 1987. Barley mutants lacking chloroplast glutamine synthetase. Biochemical and genetic analysis. Plant Physiol. 83, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Welander M. 1978. The effect of mercaptoethanol on the activity of enzymes of nitrogen metabolism in leaves from Urtica dioica and Spinacia oleracea. Physiol. Plant 43, 242–246.

    Article  CAS  Google Scholar 

  • Yamaya T., Oaks A., Matsumoto H. 1984. Characteristics of glutamate dehydrogenase prepared from corn shoots. Plant Physiol. 76, 1009–1013.

    PubMed  CAS  Google Scholar 

  • Yamaya T., Oaks A. 1987. Synthesis of glutamate by mitochondria. An anaplerotic function for glutamate dehydrogenase. Physiol. Plant. 70, 749–756.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwinta, J., Bielawski, W. Glutamate dehydrogenase in higher plants. Acta Physiol Plant 20, 453–463 (1998). https://doi.org/10.1007/s11738-998-0033-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-998-0033-1

Key words

Navigation