Breeding for salt tolerance in crop plants — the role of molecular biology

Abstract

Salinity in soil affects about 7 % of the land’s surface and about 5 % of cultivated land. Most importantly, about 20 % of irrigated land has suffered from secondary salinisation and 50 % of irrigation schemes are affected by salts. In many hotter, drier countries of the world salinity is a concern in their agriculture and could become a key issue. Consequently, the development of salt resistant crops is seen as an important area of research. Although there has been considerable research into the effects of salts on crop plants, there has not, unfortunately, been a commensurate release of salt tolerant cultivars of crop plants. The reason is likely to be the complex nature of the effect of salts on plants. Given the rapid increase in molecular biological techniques, a key question is whether such techniques can aid the development of salt resistance in plants.

Physiological and biochemical research has shown that salt tolerance depends on a range of adaptations embracing many aspects of a plant’s physiology: one of these the compartmentation of ions. Introducing genes for compatible solutes, a key part of ion compartmentation, in salt-sensitive species is, conceptually, a simple way of enhancing tolerance. However, analysis of the few data available suggests the consequences of transformation are not straightforward. This is not unexpected for a multigenic trait where the hierarchy of various aspects of tolerance may differ between and within species. The experimental evaluation of the response of transgenic plants to stress does not always match, in quality, the molecular biology.

We have advocated the use of physiological traits in breeding programmes as a process that can be undertaken at the present while more knowledge of the genetic basis of salt tolerance is obtained. The use of molecular biological techniques might aid plant breeders through the development of marker aided selection.

This is a preview of subscription content, access via your institution.

References

  1. Agboma P. C., Jones M. G. K., Peltonen Sainio P., Rita H. and Pehu E. 1997. Exogenous glycinebetaine enhances grain yield of maize, sorghum and wheat grown under two supplementary watering regimes. Journal of Agronomy and Crop Science-Zeitschrift Fur Acker Und Pflanzenbau 178: 29–37.

    CAS  Google Scholar 

  2. Agboma P. C., Sinclair T. R., Jokinen K. and Peltonen Sainio P. 1997. An evaluation of the effect of exogenous glycinebetaine on the growth and yield of soybean: Timing of application, watering regimes and cultivars. Field Crops Research 54: 51–64.

    Article  Google Scholar 

  3. Ahmad S. 1990. Soil salinity and water management — keynote address. In: Proceedings of the Indo-Pak Workshop on Soil Salinity and Water Management. Director General, International Waterlogging and Salinity Research Institute (IWASRI): 3–18.

  4. Arakawa K., Mizuno K., Kishitani S. and Takabe T. 1992. Immunological studies of betaine aldehyde dehydrogenase in barley. Plant and Cell Physiology 33: 833–40.

    CAS  Google Scholar 

  5. Bohnert H. J. and Jensen R. G. 1996. Metabolic engineering for increased salt tolerance — The next step — Comment. Australian Journal of Plant Physiology 23: 661–6.

    Google Scholar 

  6. Brunk D. G., Rich P. J. and Rhodes D. 1989. Genotypic variation for glycinebetaine among public inbreds of maize. Plant Physiology 91: 1122–5.

    PubMed  CAS  Google Scholar 

  7. Broer I. 1996. Stress inactivation of foreign genes in transgenic plants. Field Crops Research: 45: 19–25.

    Article  Google Scholar 

  8. Colmer T. D., Epstein E. and Dvorak J. 1995. Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host) A Love amphiploid. Plant Physiology 108: 1715–24.

    PubMed  CAS  Google Scholar 

  9. Flowers T. J. and Yeo A. R. 1981. Variability of sodium chloride resistance within rice (Oryza sativa L.) varieties. New Phytologist 88: 363–373.

    Article  CAS  Google Scholar 

  10. Flowers T. J. and Dalmond D. 1992. Protein synthesis in halophytes — the influence of potassium, sodium and magnesium in vitro. Plant and Soil 146: 153–61.

    Article  CAS  Google Scholar 

  11. Flowers T. J. and Yeo A. R. 1995. Breeding for salinity resistance in crop plants: where next? Australian Journal of Plant Physiology 22: 875–884.

    Google Scholar 

  12. Flowers T. J., Flowers S. A. and Greenway H. 1986. Effects of sodium chloride on tobacco plants. Plant, Cell and Environment 9: 645–51.

    Article  CAS  Google Scholar 

  13. Gibon Y., Bessieres M. A. and Larher F. 1997. Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? Plant Cell and Environment 20: 329–40.

    Article  Google Scholar 

  14. Garcia A., Rizzo C.A., Ud-Din J., Bartos S.L., Senadhira D., Flowers T.J. and Yeo A.R. 1997. Sodium and potassium transport to the xylem are inherited independently in rice and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant, Cell and Environment 20: 1167–1174.

    Article  CAS  Google Scholar 

  15. Ghassemi F., Jakeman A. J. and Nix H. A., 1995. Salinisation of Land and Water Resources. CAB International, Wallingford, 526 pp.

    Google Scholar 

  16. Gorham J. 1996. Glycinebetaine is a major nitrogen-containing solute in the Malvaceae. Phytochemistry 43: 367–9.

    Article  CAS  Google Scholar 

  17. Gorham J., Forster B. P., Budrewicz E., Wyn Jones, R. G., Miller T. E. and Law C.N. 1986. Salt tolerance in the Triticeae: Solute accumulation and distribution in an Amphidiploid derived from Triticum aestivum cv. Chinese Spring and Thinopyrum bessarabicum. Journal of Experimental Botany 37: 1435–49.

    Article  CAS  Google Scholar 

  18. Grote E. M., Ejeta G. and Rhodes D. 1994. Inheritance of Glycinebetaine Deficiency in Sorghum. Crop Science 34: 1217–20.

    CAS  Article  Google Scholar 

  19. Grumet R. and Hanson A. D. 1987. Genetic evidence for an osmoregulatory function of glycinebetaine accumulation in Barley. Australian Journal of Plant Physiology 13: 353–64.

    Article  Google Scholar 

  20. Hall J. L., Harvey D. M. R. and Flowers T. J. 1978. Evidence for the cytoplasmic localization of betaine in leaf cells of Suaeda maritima. Planta 140: 59–62.

    Article  CAS  Google Scholar 

  21. Hanson A. D., Rathinasabapathi B., Rivoal J., Burnet M., Dillon M. O. and Gage D. A. 1994. Osmoprotective compounds in the Plumbaginaceae — a natural experiment in metabolic engineering of stress tolerance. Proceedings of the National Academy of Sciences of the United States of America 91: 306–10.

    PubMed  Article  CAS  Google Scholar 

  22. Harinasut P., Tsutsui K., Takabe T., Nomura M., Takabe T. and Kishitani S. 1996. Exogenous glycine-betaine accumulation and increased salt — tolerance in rice seedlings. Bioscience Biotechnology and Biochemistry 60: 366–8.

    CAS  Google Scholar 

  23. Holmstrom K. O., Welin B., Mandal A., Kristiansdottir I., Teeri T. H., Lamark T., Strom A. R. and Palva E. T. 1994. Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants. Plant Journal 6: 749–58.

    PubMed  Article  CAS  Google Scholar 

  24. Ishitani M., Nakamura T., Han S. Y. and Takabe T. 1995. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic aicd. Plant Molecular Biology 27: 307–15.

    PubMed  Article  CAS  Google Scholar 

  25. Jones P. W. and Cassells A. C. 1995. Criteria for decision making in crop improvement programmes — Technical considerations. Euphytica 85: 465–76.

    Article  Google Scholar 

  26. Karakas B., OziasAkins P., Stushnoff C., Suefferheld M. and Rieger M. 1997. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell and Environment 20: 609–16.

    Article  Google Scholar 

  27. Lilius G., Holmberg N. and Bulow L. 1996. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Bio-Technology 14: 177–80.

    CAS  Google Scholar 

  28. Lin C. C. and Kao C. H. 1995. NaCl stress in rice seedlings: Effects of L-proline, glycinebetaine, L-and D-asparagine on seedling growth. Biologia Plantarum 37: 305–8.

    CAS  Article  Google Scholar 

  29. Lone M. I., Kueh J. S. H., Wyn Jones R. G. and Bright S. W. J. 1987. Influence of proline and glycine-betaine, on salt tolerance of cultured barley embryos. Journal of Experimental Botany 38: 479–90.

    Article  CAS  Google Scholar 

  30. Makela P., PeltonenSainio P., Jokinen K., Setala H., Hinkkanen R. and Somersalo S. 1996. Uptake and translocation of foliar-applied glycinebetaine in crop plants. Plant Science 121: 221–30.

    Article  Google Scholar 

  31. Marcum K. B. and Murdoch C. L. 1994. Salinity Tolerance Mechanisms of 6 C(4) Turfgrasses. Journal of the Society for Horticultural Science 119: 779–84.

    CAS  Google Scholar 

  32. McLean W. F. H., Blunden G. and Jewers K. 1996. Quaternary ammonium-compounds in the Capparaceae. Biochemical Systematics and Ecology 24: 427–34.

    Article  CAS  Google Scholar 

  33. Monyo E. S., Ejeta G. and Rhodes D. 1992. Genotypic Variation for Glycinebetaine in Sorghum and Its Relationship to Agronomic and Morphological Traits. Maydica 37: 283–6.

    Google Scholar 

  34. Murthy M. and Tester M. 1996. Compatible solutes and salt tolerance: Misuse of trangenic tobacco. Trends in Plant Science 1: 294–5.

    Google Scholar 

  35. Nakamura T., Yokota S., Muramoto Y., Tsutsui K., Oguri Y., Fukui K. and Takabe T. 1997. Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein in peroxisomes. Plant Journal 11: 1115–20.

    PubMed  Article  CAS  Google Scholar 

  36. Nolte K. D., Hanson A. D. and Gage D. A. 1997. Proline accumulation and methylation to proline betaine in Citrus: Implications for genetic engineering of stress resistance. Journal of the American Society for Horticultural Science 122: 8–13.

    CAS  Google Scholar 

  37. Rathinasabapathi B., Gage D. A., Mackill D. J. and Hanson A. D. 1993. Cultivated and wild rices do not accumulate glycinebetaine due to deficiencies in two biosynthetic steps. Crop Science 33: 534–8.

    CAS  Article  Google Scholar 

  38. Rathinasabapathi B., McCue K. F., Gage D. A. and Hanson A. D. 1994. Metabolic engineering of glycine betaine synthesis — plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta 193: 155–62.

    PubMed  Article  CAS  Google Scholar 

  39. Rhodes D. and Rich P. J. 1988. Preliminary genetic studies of the phenotype of betaine deficiency in Zea mays L. Plant Physiology 88: 102–8.

    PubMed  CAS  Google Scholar 

  40. Rhodes D., Rich P. J., Brunck D. G., Ju G. C., Rhodes J. C., Pauly M. H. and Hansen L. A. 1989. Development of two isogenic sweet corn hybrids differing for glycinebetaine content. Plant Physiology 91: 1121–5.

    Article  Google Scholar 

  41. Saneoka H., Nagasaka C., Hahn D. T., Yang W. J., Premachandra G. S., Joly R. J., Rhodes D. 1995. Salt tolerance of glycinebetaine-deficient and glycinebetaine-containing maize lines. Plant Physiology 107:631–638.

    PubMed  CAS  Google Scholar 

  42. Serrano R. 1996. Salt tolerance in plants and microorganisms: Toxicity targets and defense responses. In: International Review of Cytology. A Survey of Cell Biology, Vol 165, ed. by K W Jeon Academic Press Inc: 1–52.

  43. Storey R., Ahmad N. and Wyn Jones R. G. 1977. Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plats. Oecologia (Berl) 27: 319–32.

    Article  Google Scholar 

  44. Szabolcs I. 1992. Salinization of soils and water and its relation to desertification. Desertification Control Bulletin 21: 32–37.

    Google Scholar 

  45. Tarczynski M. C., Jensen R. G. and Bohnert H. J. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508–10.

    Article  CAS  PubMed  Google Scholar 

  46. Thomas J. C., Sepahi M., Arendall B. and Bohnert H. J. 1995. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell and Environment 18: 801–6.

    Article  CAS  Google Scholar 

  47. Tuinstra M. R., Grote E. M., Goldsbrough P. B. and Ejeta G. 1996. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Science 36: 1337–44.

    CAS  Article  Google Scholar 

  48. Valenzuelasoto E. M. and Munozclares R. A. 1994. Purification and properties of betaine aldehyde dehydrogenase extracted from detached leaves of Amaranths-hypochondriacs L subjected to water-deficit. Journal of Plant Physiology 143: 145–52.

    CAS  Google Scholar 

  49. Wood A. J., Saneoka H., Rhodes D., Joly R. J. and Goldsbrough P. B. 1996. Betaine aldehyde dehydrogenase in sorghum- Molecular cloning and expression of two related genes. Plant Physiology 110: 1301–8.

    PubMed  Article  CAS  Google Scholar 

  50. Yang W. J., Nadolskaorczyk A., Wood K. V., Hahn D. T., Rich P. J., Wood A. J., Saneoka H., Premachandra G. S., Bonham C. C., Rhodes J. C., Joly R. J., Samaras Y., Goldsbrough P. B. and Rhodes D. 1995. Near-Isogenic Lines of Maize Differing For Glycinebetaine. Plant Physiology 107: 621–30.

    PubMed  Article  CAS  Google Scholar 

  51. Yeo A. R., Yeo M. E., Flowers S. A. and Flowers T. J. 1990. Screening of rice (Oryza sativa L) genotypes for physiological characters contributing to salinity resistance and their relationship to overall performance. Theoretical and Applied Genetics 79: 397–384.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Flowers, T.J., Garcia, A., Koyama, M. et al. Breeding for salt tolerance in crop plants — the role of molecular biology. Acta Physiol Plant 19, 427–433 (1997). https://doi.org/10.1007/s11738-997-0039-0

Download citation

Key words

  • halophytes
  • molecular biology
  • molecular genetics
  • plant breeding
  • rice
  • salinity
  • saltaffected soils
  • salt tolerance
  • sodicity