Skip to main content
Log in

Ginger rhizome priming with lipopeptide-producing endophytic Bacillus species to control ginger soft-rot disease caused by Pythium myriotylum

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Antagonistic endophytes previously isolated from the wild ginger congener, Zingiber zerumbet (L.) Smith were evaluated in the present study towards identifying candidate biocontrol agents (BCAs) for control of soft-rot disease caused by Pythium myriotylum. Bacillus isolates designated ZzER11 (B. amyloliquefaciens) and ZzER62 (B. subtilis), showing significant inhibition (> 80%) of P. myriotylum were characterized for production of lipopeptide (LP) biosurfactant. PCR screening for LP biosynthetic genes and MALDI-TOF–MS analyses revealed the production of surfactin, iturin and fengmycin (1010–1550 m/z range) classes of LPs by the selected Bacillus spp. Microscopic examination of P. myriotylum hyphae following confrontation experiments with ZzER11 and ZzER62 showed morphological distortions to mycelia including hyphal shrinkage and plasmolysis. Absolute inhibition of P. myriotylum hyphal growth was observed in presence of ZzER11 and ZzER62 LP extracts following disc diffusion assays. Biocontrol potential of ZzER11 and ZzER62 against the soft-rot disease was confirmed by priming ginger rhizomes with the endophytes. Results revealed effective control of soft-rot disease in endophyte-primed ginger rhizome even at high P. myriotylum zoospore concentration (104 zoospores/ g soil) with sprouts emerging after 30 days of infection (doi) and forming healthy plantlets. The selected antagonistic endophytic isolates from Z. zerumbet thus offer a solution for imparting resistance to ginger cultivars through microbiome manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Authors confirm that the data supporting the findings of the study are included in the manuscript. Raw data that support the findings of the present study are available from the corresponding author, upon reasonable request.

References

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping – off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahim AH, Ali MB, Daoud L, Jlidi M, Akremi I, Hmani H, Feto NA, Ali MB (2022) Biopriming of durum wheat seeds with endophytic diazotrophic bacteria enhances tolerance to Fusarium head blight and salinity. Microorganisms 10:970

    Article  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria. Nat Rev Microbiol 3(3):238–250

    Article  CAS  PubMed  Google Scholar 

  • Choudary DK, Jhori BN (2009) Interactions of Bacillus spp and plants – with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513

    Article  Google Scholar 

  • Compant S, Kaplan H, Sessitsch A, Nowak J, Barka EA, Clément C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: From the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93

    Article  CAS  PubMed  Google Scholar 

  • Dohroo NP (2005) Diseases of ginger In ‘Ginger, the genus Zingiber’. CRC Press, Edition 1, ISBN 1420023365, pp 305–340.

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Gadhave KR, Devlin PF, Ebertz A, Ross A, Gange AC (2018) Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context- specific manner. Microbial Ecol 76:741–750

    Article  CAS  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J of Bot 100(9):1738–1750

    Article  Google Scholar 

  • Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169:533–540

    Article  CAS  PubMed  Google Scholar 

  • He CP, Fan LY, Wu WH, Liang YQ, Tang W, Li R, Zheng XL, Xiao YN, Liu ZX, Zheng FC (2017) Identification of lipopeptides produced by Bacillus subtilis Czk1 isolated from the aerial roots of rubber trees. Genet Mol Res 16(1):1–13

    Article  Google Scholar 

  • Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49(3):186–191

    Article  CAS  PubMed  Google Scholar 

  • Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany 90:137–149

    Article  Google Scholar 

  • Kavitha PG, Nair P, Aswati NR, Jayachandran BK, Sabu M, Thomas G (2007) AFLP polymorphism and Pythium response in Zingiber species. In: Keshvachandran et al (ed) Recent Trends in Horticultural Biotechnology. New India Publishing Agency, New Delhi

    Google Scholar 

  • Keerthi D, Aswati RN, Prasath D (2016) Molecular phylogenetics and anti-Pythium activity of endophytes from rhizomes of wild ginger congener, Zingiber zerumbet Smith. World J Microbiol Biotechnol 32(3):41

    Article  CAS  PubMed  Google Scholar 

  • Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:2732

    Article  PubMed  PubMed Central  Google Scholar 

  • Khyati V, Pathak KH (2014) Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. 3 Biotech. 4(3):283–295

    Google Scholar 

  • Kim P, Young II, Ryu J, Kim YH, ChI YT (2010) Production of biosurfactant lipopeptides Iturin A, Fengycin, and Surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporoides. J of Microbiol Biotechnol 20(1):138–145

    Article  CAS  Google Scholar 

  • Kumar A, Reeja ST, Bhai RS, Shiva KN (2008) Distribution of Pythium myriotylum Drechsler causing soft rot of ginger. JOSAC 17(1):5–10

    Google Scholar 

  • Lareen A, Burton F, Schafer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90(6):575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in phytobiome. Cell 169:587–596

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang X, Han M, Zhao Z, Wang M, Tang Q, Liu C, Kemp B, Gu Y, Shuang J, Xue Y (2012) Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afr J of Biotechnol 11:231–242

    CAS  Google Scholar 

  • Liu J, Zhou T, He D, Li X-Z, Wu H, Liu W et al (2011) Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J Mol Microbiol Biotechnol 20:43–52

    PubMed  Google Scholar 

  • Liu J, Cui X, Liu Z, Guo Z, Yu Z, Yao Q, Sui Y, Jin J, Liu X, Wang G (2019) The diversity and geographic distribution of cultivable Bacillus-like bacteria across black soils of Northeast China. Front in Microbiol 10:1–11

    Google Scholar 

  • Luong TM, Huynh LMT, Hoang HMT, Tesoriero LA, Burgess LW, Phan GHT, Davies P (2010) First report of Pythium root rot of chrysanthemum in Vietnam and control with metalaxyl drench. Aust Plant Dis Notes 5(1):51–54

    Article  Google Scholar 

  • Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology and prospects for biological control. Crit Rev Plant Sci 18(2):111–181

    Article  CAS  Google Scholar 

  • Mora I, Cabrefiga J, Montesinos E (2011) Antimicrobial peptide genes in Bacillus strains from plant environments. Internatl Microbiol 14:213–223

    CAS  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J (2000) Structure, production characteristics and fungal antagonism of tensin–a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89(6):992–1001

    Article  CAS  PubMed  Google Scholar 

  • Nzungize JR, Lyumugabe F, Busogoro J-P, Baudoin J-P (2012) Pythium root rot of common bean: biology and control methods. A Review Biotechnol Agron Soc Environ 16:405–413

    Google Scholar 

  • Ongena M, Jacques P (2007) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiol 16:115–125

    Article  Google Scholar 

  • Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644

    Article  PubMed  Google Scholar 

  • Peter P, Aswati RN, Divakaran K, Ganapathy G (2019) Evaluating type III polyketide synthase (PKS) and terpene synthase (TPS) expression in incompatible interactions of Zingiber zerumbet to Pythium myriotylum Drechsler. Arch of Phytopathol and Plant Prot 52:1161–1176

    Article  CAS  Google Scholar 

  • Peter P, Divakaran K, Kaniyala H, Nair AR (2021) Endophytic Bacillus spp. from Zingiber zerumbet rhizome, rhizosphere and axenic cultures: characterisation and identification of isolates with plant growth promoting activities. Arch Phytopathol Plant Prot 54 (19–20): 2007–2022

  • Princy P, Keerthi D, Harsha K, Aswati Nair R (2021) Endophytic Bacillus spp. from Zingiber zerumbet rhizome, rhizosphere and axenic cultures: characterisation and identification of isolates with plant growth promoting activities and antagonism to soft-rot causative Pythium myriotylum. Arch. Phytopathol. Plant Prot 54(19–20):2007–22.

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Ramarathnam R, Bo S, Chen Y, Fernando WGD, Xuewen G, de Kievit, (2007) Molecular and biochemical detection of fengycin and bacillomycin D producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53(7):901–911

    Article  CAS  PubMed  Google Scholar 

  • Ravi A, Varghese S, Krishnankutty RE (2017) Biocontrol activity of the extract prepared from Zingiber zerumbet for the management of rhizome rot in Zingiber officinale caused by Pythium myriotylum. Archives Phytopathol Plant Protect 50(11–12):555–567

    Article  CAS  Google Scholar 

  • Sajitha KL, Dev SA (2016) Quantification of antifungal lipopeptide gene expression levels in Bacillus subtilis B1 during antagonism against sap-stain fungus on rubberwood. Biol Control 96:78–85

    Article  CAS  Google Scholar 

  • Santiago-Santiago H, Aranda-Ocampo S, Peña-Lomeli A, Hernández-Morales J (2020) Effect of Bacillus spp. on the germination and growth of roselle plants (Hibiscus sabdariffa L.). Agro Product. 13(10):45–48

    Article  Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium mediated plant defense against phytopathogens: Readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Smyth TJP, Perfumo A, McClean S, Marchant R, Banat IM (2010) Isolation and Analysis of lipopeptides and high molecular weight biosurfactants; In Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology, Springer, Berlin pp. 3687–3704

  • Suchitra M (2015) Into the ginger trap. Down to Earth (http://www.downtoearth.org.in/coverage/into-the-ginger-trap-50157)

  • Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103(6):2331–2339

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, Sekhar AC (2016) Effects due to rhizospheric soil application of an antagonistic bacterial endophyte on native bacterial community and its survival in soil: a case study with Pseudomonas aeruginosa from banana. Front Microbiol 7:493

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuge K, Inoue S, Ano T, Itaya M, Shoda M (2005) Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin a producer. Antimicrob Agents Chemother 49(11):4641–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68(12):6210–6219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM (1988) Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful for the assistance of the Indian Institute of Science (IISC), Bangalore for the MALDI-TOF-MS analysis. PP also thanks MHRD (Ministry of Human Resource and Development, Govt. of India) for the research fellowship received. Authors also thank the anonymous reviewer's for their insightful comments and suggestions.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aswati R. Nair.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interests.

Additional information

Communicated by M. J. Reigosa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Princy, P., Nair, A.R. & Raj, S. Ginger rhizome priming with lipopeptide-producing endophytic Bacillus species to control ginger soft-rot disease caused by Pythium myriotylum. Acta Physiol Plant 45, 70 (2023). https://doi.org/10.1007/s11738-023-03544-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-023-03544-5

Keywords

Navigation