Skip to main content

Advertisement

Log in

Whole-genome sequencing reveals putative underlying mechanisms of biocontrol capability of IBFCBF-5

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

As the world’s food safety and environmental safety problems become increasingly severe, the agricultural sectors of various countries are also paying closer attention to the use of biofertilizers and biocontrol agents. Rhizosphere bacteria are a significant source of commonly used biofertilizers and biocontrol agents. This study aims to describe the genome and genomic traits of a biocontrol agent in the genus Bacillus. In this paper, a strain of Bacillus amyloliquefaciens IBFCBF-5 was isolated and identified to have an inhibitory effect on several common oomycete and fungal pathogens Phytophthora capsica, Sclerotinia sclerotiorum, Colletotrichum gloeosporioides, and Fusarium oxysporum f.sp. cucumerinum. The genome of strain IBFCB-5 was sequenced, and the assembled genome was 4,338,658 bp, with a G + C content of 46.05%. The IBFCBF-5 genome contains abundant GH, GT, CE, PL, AA, and CBM gene families, potentially degrading cellulose and hemicellulose, chitin, starch, xylan, peptidoglycan, etc. In addition, 14 lipopeptide and polypeptide antibiotic gene clusters were found in IBFCBF-5, including those coding for the synthesis of several known antifungal and antibacterial compounds Fengycin, Bacilysin, Bacillibactin, and Plantazolicin. Our results show that Bacillus amyloliquefaciens IBFCBF-5 has a broad-spectrum antifungal ability and that its genome contains many genes coding for enzymes involved in the synthesis of antimicrobial metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data set generated and/or analyzed during the current study can be found in the NCBI repository [https://www.ncbi.nlm.nih.gov/], including a total of 1 sequence, with accession numbers: SUB9291413 (IBFCBF-5),. The data will be released in October 2021.

References

  • Ali S, Hameed S, Imran A, Iqbal M, Lazarovits G (2014) Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities. Microb Cell Factories 13:144

    Google Scholar 

  • Altschul SF (2012) Basic local alignment search tool (BLAST). J Mol Biol 215(3):403–410

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J-H, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anith KN, Radhakrishnan NV, Manomohandas TP (2003) Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiol Res 158(2):91–97

    Article  CAS  PubMed  Google Scholar 

  • Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 2014(13):66

    Article  Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:988–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31(1):365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z-Y (2015) Research and application of bio-fungicide with Bacillus spp. Chin J Biol Control 31(5):723–732

    CAS  Google Scholar 

  • Chen C-P, Jia P-X (1992) Gene regulation of Bacillus protease. Microbiol Bull 02:40–43

    Google Scholar 

  • Chu X-M, Lin Y-X, Zhang K, Yan F, Lin H-T (2014) Research Progress on Antibacterial Proteins of Bacillus amyloliquefaciens. Packag Food Mach 06:49–54

    Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Deng Y-Y, Li J-Q, Wu S-F, Zhu Y-P, Chen Y-W, He F-C (2006) Integrated nr database in protein annotation system and its localization. Comput Eng 32(5):71–73

    Google Scholar 

  • Du N, Shi L, Yuan Y, Sun J, Shu S, Guo S-R (2017) Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber. Microbiol Res 202:1–10

    Article  PubMed  Google Scholar 

  • Eddy SR (1998) Profile hidden markov models. Bioinformatics 14(9):755–763

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A (2008) The Pfam protein families database. Nuclc Acids Res 36:D281–D288

    Article  CAS  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  CAS  PubMed  Google Scholar 

  • Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321

    Article  PubMed  Google Scholar 

  • Huang X-Q, Gao X-P, Zhao G-M, Li M-Y, Liu Y-X (2010) Research progress on antibacterial mechanism of antimicrobial peptides. J Biol 27(2):62–66

    Google Scholar 

  • Hui W-Y, Zhang H-P (2016) Application of genomic analysis in microbial Taxonomy. Microbiol China 43(5):1136–1142

    Google Scholar 

  • Hunter P (2009) Fight fire with fire. Fight fire with fire. Can biopesticides fill the void left by banning chemical pesticides and herbicides? EMBO Rep 10(5):433–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119

    Article  Google Scholar 

  • Jin Q, Xiao M (2018) Novel antimicrobial peptides: surfactin, iturin and fengycin. J Microbes Infect 13(1):56–64

    Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(1):D277–D280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khedher SB, Kilani-Feki O, Dammak M, Jabnoun-Khiareddine H, Daami-Remadi M, Tounsi S (2015) Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. CR Biol 338(12):784–792

    Article  Google Scholar 

  • Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhang Z-Y, Sun H-Y, Fu W-Q (2018) Discussion on pesticide harm and green plant protection technology. Hubei Plant Prot 04:63–64

    Google Scholar 

  • Li X-P, Li Y (1988) Construction and properties of recombinant plasmid No.44 containing a promoter DNA fragment of Butirosin producing bacterium Bacillus circulans NRRL-B3312[J]. Chin J Antibiot 05:3–10

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molohon KJ, Saint-Vincent PM, Park S, Doroghazi JR, Maxson T, Hershfield JR, Mitchell DA (2015) Plantazolicin is an ultranarrow-spectrum antibiotic that targets the Bacillus anthracis membrane. ACS infectious diseases 2(3):207–220

  • Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2008a) Bacillus lipopeptides: versatile weapons for plant disease biocontrol – science direct. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008b) Bacillus lipopeptides: versatile weapons for plant disease biocontrol - ScienceDirect. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Planchot V, Colonna P (2018) Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri. Proc Nat Acad Sci India 27(1):3077–3084

    Google Scholar 

  • Qiu D-W (2015) Development status and trend analysis of biological pesticides. Chin J Biol Control 31(05):679–684

    Google Scholar 

  • Ren X, Nan Z, Cao M, Wu K, Shen Q-R, Huang Q-W (2012) Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5. Biol Fertil Soils 48(6):613–620

    Article  Google Scholar 

  • She R, Chu JS-C, Wang K, Pei J, Chen N-S (2009) genBlastA: Enabling BLAST to identify homologous gene sequences. Genome Res 19:143–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H-M, Zhang B-L, Fan W-W, Xu B-H, Li L-J (2008) Research progress of cellular fatty acid analysis technology in the field of microbiology. Chin J Health Lab Sci 10:248–249

    Google Scholar 

  • Tao W, Liu X-H, Wu M-B, Ge S (2018) Molecular insights into the antifungal mechanism of bacilysin. J Mol Model 24(5):118

    Article  Google Scholar 

  • Tarailo-Graovac M, Chen N-S (2009) Using repeatmasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinform. https://doi.org/10.1002/0471250953.bi0410s25

    Article  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin E (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:133–136

    Article  Google Scholar 

  • Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q-D, Wortman J, Young SK, Earl AM (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9(11):e112963

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T (2016) Preparation of antifungal compound bacilysin, study on antibacterial mechanism and exploration of structural modification. Zhejiang University

    Google Scholar 

  • Wang Z-Y, Mao Z-C, Wu X-X, Zhou H-P, Wu Y-X, He Q-Y (2009) Preliminary study on the synthesis pathway of the bacteriostatic active substance difficidin in Bacillus cereus B9601-Y2[J]. Proceedings of the 2009 Annual Meeting of the Chinese Society of Plant Pathology, 2009

  • Yang Q, Han W-J, Zhang W-J, Lu X-L, Liu X-Y, Xu Q-Z, Miao H-N, Jiao B-H (2009) Isolation and identification of a strain of marine Bacillus amyloliquefaciens producing a new type of macrolide antibiotic. Chin J Marit Med Hyperb Med 16(2):92–95

    CAS  Google Scholar 

  • Yang S-Y, Wei J, Zhen X-R (2015) Optimization of fermentation medium for antibacterial substances of Bacillus amyloliquefaciens. Food Sci 2015:150–156

    Google Scholar 

  • Zhang Q-Q, Zhu H-M, Yang X-J, Huang Z-W, Gong M-X, Zhang Z-Q, Niu J-J, Yang H-J (2019) Biosynthesis and structure analysis of catecholsiderophore produced by Bacillus subtilis MB8. Southwest China J Agric Sci 32(06):1259–1266

    Google Scholar 

  • Zhang D-F, Gao Y-X, Wang Y-J, Liu C, Shi C-B (2020) Advances in taxonomy, antagonistic function and application of Bacillus velezensis. Microbiol 47(11):3634–3649

    Google Scholar 

  • Zhang D-F, Gao Y-X, Ke X-L, Wang Y-J, Ren Y, Shi C-B (2021) Analysis of the genome sequence of Bacillus Velez LF01 and the biocontrol effect of its metabolites. J Fisheries. https://doi.org/10.11964/jfc.20201012442

    Article  Google Scholar 

  • Zhao X, Wang W-L, Li J (2018) Isolation and Biology identification of a strain of high-temperature cellulase-producing bacteria. Gansu Agric Sci Technol 6:30–33

    Google Scholar 

  • Zhi Y (2017) Metabolic mechanism of highly-efficient biosynthesis of surfactin and its function. Jiangnan University, Wuxi

    Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their comments and suggestions. Many thanks also to the publishers for the pre-print on the Research Square, that gave us an early endorsement from other researchers. Information about the pre-print: Whole-genome sequencing reveals putative underlying mechanisms of biocontrol capability of IBFCBF-5 (https://doi.org/10.21203/rs.3.rs-668301/v1).

Funding

This work was supported by the National Key R&D Program of China (2018YFC0311300), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IBFC07), and the Biology discipline construction funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-lie Li or Liang-bin Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by J. Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Shen, Ar., Ren, Ys. et al. Whole-genome sequencing reveals putative underlying mechanisms of biocontrol capability of IBFCBF-5. Acta Physiol Plant 45, 60 (2023). https://doi.org/10.1007/s11738-023-03522-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-023-03522-x

Keywords

Navigation