Skip to main content
Log in

Coupling biochar with microbial inoculants improves maize growth and nutrients acquisition under phosphorous-limited soil

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Coupling of biochar along with microbial inoculants could increase the phosphorus (P) availability and efficiency under the P-deficient environment. However, the effects of biochar and microbes on soil P retention remain still unconcerned in the subtropical environment. In the present study, AMF Glomus mosseae and Bacillus J 119 were applied as microbial material into two texturally different soils (soil A and soil B) amended with two different biochar (Rice husk biochar, RHBC; poplar wood chip biochar, PWBC). Both soils and biochar properties significantly affected the mycorrhizal root colonization. Soil amended with RHBC significantly improved the root colonization and root surface area in the no-P environment. Additionally, plant root and shoot biomass significantly enhanced in the combination of B + AMF. Moreover, B + AMF enhanced macronutrients (N, P, K, and Ca) and micronutrient concentration (Mg, Mn, Cu, and Zn) in plant root and shoot with biochars and in the no-P application. Overall, biochar application in both soils might increase the availability of nutrients especially P for maize plants. However, the responses of both biochar and microbial inoculants were varied with soil and biochar types which need in-depth investigations, especially its residual effects at field conditions in different climatic conditions before final recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasi MK, Khaliq A (2016) Nitrogen mineralization of a loam soil supplemented with organic–inorganic amendments under laboratory incubation. Front Plant Sci 7:1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Aller DRS, Laird D, Cruse R, Hatfield J (2017) Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma 307:114–121

    Article  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Alshankiti A, Gill S (2016) Integrated plant nutrient management for sandy soil using chemical fertilizers, compost, biochar and biofertilizers. J Arid Studis 26(3):101–106

    Google Scholar 

  • Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81:687–711

    Article  CAS  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research Canberra

  • Chen M, Yang G, Sheng Y, Li P, Qiu H, Zhou X, Huang L, Chao ZJFips, (2017a) Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Front Plant Sci 8:931

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y-L, Xu Z-W, Xu T-L, Veresoglou SD, Yang G-W (2017b) Chen B-DJSB, Biochemistry Nitrogen Deposition and Precipitation Induced Phylogenetic Clustering of Arbuscular Mycorrhizal Fungal. Communities 115(233):242

    Google Scholar 

  • Chintala R, Schumacher TE, McDonald LM, Clay DE, Malo DD, Papiernik SK, Clay SA, Julson JL (2014) Phosphorus sorption and availability from biochars and soil/b iochar mixtures. Clean: Soil, Air, Water 42(5):626–634

    CAS  Google Scholar 

  • Cordell D, White S (2014) Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu Rev Environ Resour 39:161–188

    Article  Google Scholar 

  • Cordell D, Rosemarin A, Schröder JJ, Smit AJC (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84(6):747–758

    Article  CAS  PubMed  Google Scholar 

  • Deenik JL, McClellan A, Uehara G. 2009 Biochar volatile matter content effects on plant growth and nitrogen transformations in a tropical soil. Proceedings of the Western Nutrient Management Conference pp 26–31

  • Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou L, Zheng B (2016) Biochar to improve soil fertility a review. Agron Sus Dev 36(2):36

    Article  Google Scholar 

  • Ding J, Yin Y, Sun A-Q, Lassen SB, Li G, Zhu D, Ke X (2019) Effects of biochar amendments on antibiotic resistome of the soil and collembolan gut. J Hazard Mater 377:186–194

    Article  CAS  PubMed  Google Scholar 

  • Ducey TF, Bauer PJ, Sigua GC, Hunt PG, Miller JO, Cantrell KB (2017) Manure-derived biochars for use as a phosphorus fertilizer in cotton production. J Cotton Sci 21:259–264

    Article  CAS  Google Scholar 

  • Dugdug AA, Chang SX, Ok YS, Rajapaksha AU, Anyia A (2018) Phosphorus sorption capacity of biochars varies with biochar type and salinity level. Environ Sci Pollut Res Int 25(26):25799–25812

    Article  CAS  PubMed  Google Scholar 

  • Estefan G, Sommer R, Ryan J (2013) Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region 3

  • Feldmann F, Idczak E (1992) 18 Inoculum Production of Vesicular-arbuscular Mycorrhizal Fungi for Use in Tropical Nurseries. In: Methods in microbiology. Elsevier. pp 339–357

  • Galindo-Castañeda T, Brown KM, Lynch JPJP, Cell E (2018) Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. Plant Cell Environ 41(7):1579–1592

    Article  PubMed  Google Scholar 

  • Galindo-Castañeda T, Brown KM, Kuldau GA, Roth GW, Wenner NG, Ray S, Schneider H, Lynch JPJP, Cell E (2019) Root cortical anatomy is associated with differential pathogenic and symbiotic fungal colonization in maize. Plant Cell Environ 42(11):2999–3014

    Article  PubMed  Google Scholar 

  • Gangil S, Wakudkar HM (2013) Generation of bio-char from crop residues. Int J Emerg Technol Adv Eng 3(3):566–570

    Google Scholar 

  • George TS, Hinsinger P, Turner BL (2016) Phosphorus in soils and plants–facing phosphorus scarcity. Springer

    Book  Google Scholar 

  • Gerlach N, Schmitz J, Polatajko A, Schluter U, Ffahnenstich H, Witt S, Fernie AR, Uroic K, Scholz U, Sonnewald U, Bucher M (2015) An Integrated Functional Approach to Dissect Systemic Responses in Maize to Arbuscular Mycorrhizal Symbiosis 38(8):1591–1612

    CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84(3):489–500

    Article  Google Scholar 

  • Hao X, Zhu Y-G, Nybroe O, Nicolaisen MHJFim, (2020) The composition and phosphorus cycling potential of bacterial communities associated with hyphae of Penicillium in soil are strongly affected by soil origin. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02951

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardy B, Sleutel S, Dufey JE, Cornelis J-T (2019) The long-term effect of biochar on soil microbial abundance activity and community structure is overwritten by land management. Front Environ Sci. https://doi.org/10.3389/fenvs.2019.00110

    Article  Google Scholar 

  • Hatamian M, Rezaei Nejad A, Kafi M, Souri MK, Shahbazi KJC, Agriculture BTi (2020) Interaction of lead and cadmium on growth and leaf morphophysiological characteristics of European hackberry (Celtis australis) seedlings. Chem. Biol. Technol. Agric. 7:1–8

    Article  Google Scholar 

  • Himmelbauer ML (2004) Estimating length, average diameter and surface area of roots using two different image analyses systems. Plant Soil 260(1–2):111–120

    Article  CAS  Google Scholar 

  • Houba V, Van der Lee J, Novozamsky I, Walinga I (1989) Soil and Plant Analysis Part 5:4–10

    Google Scholar 

  • House GL, Bever JDJRE (2019) Biochar soil amendments in prairie restorations do not interfere with benefits from inoculation with native arbuscular mycorrhizal fungi. Restor Ecol 28(4):785–795

    Article  Google Scholar 

  • Kaur G, Reddy MS (2015) Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere 25(3):428–437

    Article  CAS  Google Scholar 

  • Khan AG (1988) Inoculum density of Glomus mosseae and growth of onion plants in unsterilized bituminous coal spoil. Soil Biol Biochem 20(5):749–753

    Article  Google Scholar 

  • Khan A, Lu G, Ayaz M, Zhang H, Wang R, Lv F, Yang X, Sun B, Zhang SJA, ecosystems, environment, (2018) Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agric Ecosyst Environ 256:1–11e

    Article  CAS  Google Scholar 

  • Li H, Li Y, Xu Y, Lu X (2020) Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244:125471

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Che Y, Wang L, Zhao Z, Zhang Y, Wei L, Xiao YJC (2019) Rice straw biochar and phosphorus inputs have more positive effects on the yield and nutrient uptake of lolium multiflorum than arbuscular mycorrhizal fungi in acidic cd-contaminated Soils. Chemosphere 235:32–39

    Article  CAS  PubMed  Google Scholar 

  • Loeppert RH, Suarez DL (1996) Carbonate and gypsum, J.M. Bigham (Ed.), Methods of soil analysis, part 3-chemical methods, American Society of Agronomy, Madiscon, SSSA. Book Series No 5.

  • MAFF U (1973) The analysis of Agricultural Materials. MAFF Technical Bulletin No. 27. HMSO,

  • Malik Z, Shah Z, Tariq MJSJoA, (2019) Biochar Improves Viability of Arbuscular Mycorrhizal Fungi (Amf) in Soil and Roots of Wheat (Triticum aestivum) and Maize (Zea mays L) under Various Cropping Systems. Sarhad J Agric 35(3):834–846

    Google Scholar 

  • Mohamed EA, Farag AG, Youssef SAJJoEP. (2018) Phosphate solubilization by Bacillus subtilis and Serratia marcescens isolated from tomato plant rhizosphere. journal of Environmental Protection. 9(03): 266

  • Mustafa G, Randoux B, Tisserant B, Fontaine J, Magnin-Robert M, Sahraoui AL-H, Reignault PJM (2016) Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mycorrhiza 26(7):685–697

    Article  CAS  PubMed  Google Scholar 

  • Naiji M, Souri MKJASPHC (2018) Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Sci Pol Hortorum Cultus 17(2):167–175

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 3. Chemical Methods; SSSA Book Series; Sparks, DL., Ed. SSSA and ASA., Madison, WI, USA, No. 5.

  • Omondi MO, Xia X, Nahayo A, Liu X, Korai PK, Pan GJG (2016) Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 274:28–34

    Article  CAS  Google Scholar 

  • Page, (1982) Albert Lee Miller, Robert H Keeney. American Society of Agronomy, Dennis R. Methods of soil analysis

    Google Scholar 

  • Phillips JM, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161

    Article  Google Scholar 

  • Rafique M, Ortas I, Rizwan M, Chaudhary HJ, Gurmani AR, Hussain Munis MF (2020) Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils. Chemosphere 238:124710

    Article  CAS  PubMed  Google Scholar 

  • Rafique M, Ortas I, Ahmed IA, Rizwan M, Afridi MS, Sultan T, Chaudhary HJJJoem (2019) Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils. 247:672-680

  • Rashid A, Ahmed T, Ayub N, Khan A (1997) Effect of forest fire on number, viability and post-fire re-establishment of arbuscular mycorrhizae. Mycorrhiza 7(4):217–220

    Article  Google Scholar 

  • Raya-Hernández AI, Jaramillo-López PF, López-Carmona DA, Díaz T, Carrera-Valtierra JA, Larsen JJASE (2020) Field evidence for maize-mycorrhiza interactions in agroecosystems with low and high P soils under mineral and organic fertilization. Appl Soil Ecol 149:103511

    Article  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Soil Sci 78(2):154

    Article  Google Scholar 

  • Saghaiesh SP, Souri MKJASP-HC (2018) Root growth characteristics of Khatouni melon seedlings as affected by potassium nutrition. Acta Sci. Pol. Hortorum Cultus 17(5):191

    Article  Google Scholar 

  • Schneider HM, Postma JA, Wojciechowski T, Kuppe C, Lynch JPJPP (2017) Root cortical senescence improves growth under suboptimal availability of N. P, and k 174(4):2333–2347

    CAS  Google Scholar 

  • Shooshtari FZ, Souri MK, Hasandokht MR, Jari SKJC, Agriculture BTi (2020) Glycine mitigates fertilizer requirements of agricultural crops: case study with cucumber as a high fertilizer demanding crop. Biotechnology Advance 7(1):1–10

    Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis, 3rd edn. Academic Press, Elsevier Science. https://books.google.com.pk/books?id=qLciOJaG0C4C. ISBN 0080559344, 9780080559346.

  • Solovchenko A, Verschoor AM, Jablonowski ND, Nedbal LJBa, (2016) Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol Adv 34(5):550–564

    Article  CAS  PubMed  Google Scholar 

  • Souri MK, Hatamian MJJoPN. (2019) Aminochelates in plant nutrition: a review. Journal of Plant Nutrition. 42(1): 67–78

  • Spagnoletti FN, Leiva M, Chiocchio V, Lavado RSJJoPN, Science S, (2018) Phosphorus fertilization reduces the severity of charcoal rot (Macrophomina phaseolina) and the arbuscular mycorrhizal protection in soybean. J Plant Nutr Soil Sci 181(6):855–860

    Article  CAS  Google Scholar 

  • Tian H, Drijber RA, Li X, Miller DN, Wienhold BJ (2013) Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L). Mycorrhiza 23(6):507–514

    Article  CAS  PubMed  Google Scholar 

  • Timlin DJ, Naidu TCM, Fleisher DH, Reddy VR (2017) Quantitative effects of phosphorus on maize canopy photosynthesis and biomass. Crop Sci 57(6):3156–3169

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  • Wang Q, He N, Liu Y, Li M, Xu l, (2016) Strong pulse effects of precipitation events on soil microbial respiration in temperate forests. Gerderma 275:67–73

    Article  CAS  Google Scholar 

  • Wang LC, Parikh SJ, Scow KM (2019) Impact of biochar on water retention of two agricultural soils – a multi-scale analysis. Gerderma 340:185–191

    Article  CAS  Google Scholar 

  • Wei Y, Zhao Y, Wang H, Lu Q, Cao Z, Cui H, Zhu L (2016) Wei ZJBt an optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation. Bioresour Technol 221:139–146

    Article  CAS  PubMed  Google Scholar 

  • White K (2017) Millner PJQRoB Book Review of Biochar Application: Essential Soil Microbiology. Q R Biol 92:336–337

    Article  Google Scholar 

  • Xu G, Zhang Y, Sun J, Shao H (2016) Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Sci Total Environ 568:910–915

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Gao B, Chen J, Yang LJEs, technology, (2013) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47(15):8700–8708

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Li M (2018) Whelan MJSotTE phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ 612:522–537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the ORIC, COMSATS University Islamabad, for their lavish funding to conduct the study and also facilitate elemental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Rashad Javeed.

Additional information

Communicated by O. Ferrarese-Filho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 KB)

Supplementary file2 (XLSX 10 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javeed, H.M.R., Naeem, R., Ali, M. et al. Coupling biochar with microbial inoculants improves maize growth and nutrients acquisition under phosphorous-limited soil. Acta Physiol Plant 44, 110 (2022). https://doi.org/10.1007/s11738-022-03440-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-022-03440-4

Keywords

Navigation