Skip to main content
Log in

Physiological responses of tomato plants subjected to various combinations of irrigation levels with mineral and organomineral sources of phosphorus

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate physiological characteristics and productivity of tomato plants, in response to different irrigation depths associated with doses and sources of mineral and organomineral phosphorus (P). This research is justified by the importance of cultivation with greater water use efficiency, as well as the environmental importance of the use of organomineral fertilizers, especially aiming nutrient recycling. The experiment was conducted in a greenhouse with tomato plants in plastic pots filled with 23 L of soil. The treatments consisted of four doses of phosphorus pentoxide (P2O5) (25%, 50%, 100% and 200% of the recommended dose); two P sources (monoammonium phosphate—MAP and organomineral phosphate—OM), and four irrigation depths [50%, 75%, 100% and 125% of field capacity (FC)]. The physiological characteristics of the plants at different times after planting and the fruit yield at the end of the crop cycle were evaluated. The P dose of 25% and application of the MAP source provided higher absolute and relative growth rate of plant in height, at 66 and 96 days after planting (DAP). For the OM source, the P doses of 118% and 136% provide, respectively, higher chlorophyll b and total chlorophyll indexes of plants at 51 DAP. The 125% depth provided the highest water use efficiency (WUE) for the recommended dose (100%) of P, while the 50% depth provided the highest WUE for the tomato plants by adding 50% of the recommended P dose. The highest fruit yield was observed at the dose of 100% P, regardless of the source, associated with an irrigation depth of 125% of field capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhtar KP, Akram A, Ullah N, Saleem MY, Saeed M (2019) Evaluation of Solanum species for resistance to tomato leaf curl New Delhi virus using chip grafting assay. Sci Hortic 256:1–8. https://doi.org/10.1016/j.scienta.2019.108646

    Article  CAS  Google Scholar 

  • Alvarenga JFR, Tran C, Barroso SH, Huélamo MM, Illan M, Raventos RML (2017) Home cooking and ingredient synergism improve lycopene isomer production in Sofrito. Int Food Res J 99:851–861. https://doi.org/10.1016/j.foodres.2017.01.009

    Article  CAS  Google Scholar 

  • Alves FM, Joshi M, Djidonou D, Joshi V, Gomes CN, Leskovar DI (2021) Physiological and biochemical responses of tomato plants grafted onto Solanum pennellii and Solanum peruvianum under water-deficit conditions. Plants 10:2236. https://doi.org/10.3390/plants10112236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelocci LR (2002) Água na planta e trocas gasosas/energéticas com a atmosfera: Introdução ao tratamento biofísico. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz, São Paulo

  • Azevedo WR, Faquin V, Fernandes LA, Oliveira Júnior AC (2004) Disponibilidade de fósforo para o arroz inundado sob efeito residual de calcário, gesso e esterco de curral aplicados na cultura do feijão. Rev Bras Ciênc Solo 28:995–1004

    Article  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit inleaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Becker WF, Wamser AF, Feltrim AL, Suzuki A, Santos JP, Valmorbida J, Hahn L, Marcuzzo LL, Mueller S (2016) Sistema de produção integrada para o tomate tutorado em Santa Catarina, 1st edn. EMBRAPA e Extensão Rural de Santa Catarina (EPAGRI), Florianópolis, p 149

    Google Scholar 

  • Benincasa MMP (2003) Análise de crescimento de plantas: noções básicas. FUNEP, Jaboticabal, p 42

    Google Scholar 

  • Boari F, Donadio A, Pace B, Schiattone MI, Cantore V (2016) Kaolin improves salinity tolerance, water useefficiency and quality of tomato. Agric Water Manag 167:29–37

    Article  Google Scholar 

  • Boyle RKA, Mcainsh M, Dodd IC (2016) Stomatal closure of Pelargonium×hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying. Physiol Plant 156:84–96. https://doi.org/10.1111/ppl.12346

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhou ZJ, Andersen MN, Hu TT (2015) Tomato yield and water use efficiency-coupling effects between growth stage specific soil water deficits. Acta Agr Scand 65:460–469. https://doi.org/10.1371/journal.pone.0213643

    Article  CAS  Google Scholar 

  • Cernusak LA, Aranda J, Marshall JD, Winter K (2007) Large variation in whole-plant water-use efficiency amongtropical tree species. New Phytol 173:294–305

    Article  PubMed  Google Scholar 

  • Clemente FMVT, Boiteux LS (2012) Produção de tomate para processamento industrial. Embrapa, Brasília, p 344

    Google Scholar 

  • Coelho EF, de Souza VA, Conceição MA, Duarte JDO (1994) Comportamento da cultura do tomateiro sob quatroregimes de irrigação. Pesqu Agropecu Bras 29:1959–1968

    Google Scholar 

  • Dinis LT, Bernardo S, Luzio A, Pinto G, Meijón M, Pintó-Marijuan M, Cotado A, Correia C, Pereira-Moutinho J (2018) Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress. Braz J Plant Physiol 220:181–192. https://doi.org/10.1016/j.jplph.2017.11.007

    Article  CAS  Google Scholar 

  • Dourado-Neto D, Nielsen DR, Hopmans JW, Reichardt K, Bacchi OOS (2000) Software to model soil water retention curves (SWRC, version 2.00). Sci Agric 57(1):191–192

    Article  Google Scholar 

  • El-Hendawy SE, Al-Suhaibani NA, Elsayed S, Hassan WM, Dewir YH, Refay Y, Abdella KA (2019) Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates. Agric Water Manage 217:356–373. https://doi.org/10.1016/j.agwat.2019.03.006

    Article  Google Scholar 

  • Eraslan F, Günes A, Inal A, Çiçek N, Alpaslan M (2008) Comparative physiological and growth responses of tomato and pepper plants to fertilizer induced salinity and salt stress under greenhouse conditions. Int Meet Soil Fertil Land Manage Agroclimatol 24:687–696

    Google Scholar 

  • Fernandes FBP, Lacerda CF, Andrade EM, Neves ALR, Sousa CHC (2015) Efeito de manejos do solo no déficit hídrico, trocas gasosas e rendimento do feijão-de-corda no semiárido. Rev Ciênc Agron 46:506–515. https://doi.org/10.5935/1806-6690.20150032

    Article  Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotec 35:1039–1042. https://doi.org/10.1590/S1413-70542011000600001

    Article  Google Scholar 

  • Ferreira MMM, Ferreira GB, Fontes PCR, Dantas JP (2006) Índice SPAD e teor de clorofila no limbo foliar do tomate em função de doses de nitrogênio e da adubação orgânica, em duas épocas de cultivo. Rev Ceres 53:83–92

    Google Scholar 

  • Ferraz RLDS, Melo ASD, Suassuna JF, Brito MEBD, Fernandes PD, Nunes Júnior EDS (2012) Trocas gasosas eeficiência fotossintética em ecótipos de feijoeiro cultivados no semiárido. Pesqui Agropecu Trop 42:181–188

    Article  Google Scholar 

  • Filgueira FAR (2008) Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças, 3rd edn. Universidade Federal de Viçosa, Viçosa, MG, p 421

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2018) Statistics division. Available htttp://fao.org/faostat. Accessed 14 Mar 2021

  • Giuliani MM, Gagliardi A, Nardella E, Carucci F, Amodio ML, Gatta G (2019) The effect of strobilurin on ethylene production in flowers, yield and quality parameters of processing tomato grown under a moderate water stress condition in Mediterranean area. Sci Hortic 249:155–161. https://doi.org/10.1016/j.scienta.2019.01.050

    Article  CAS  Google Scholar 

  • Hebbar SS, Ramachandrappa BK, Nanjappa HV, Prabhakar M (2004) Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.). Eur J Agron 21:117–127

    Article  Google Scholar 

  • Ierna A, Mauromicale G (2018) Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agric Water Manage 201:21–26. https://doi.org/10.1016/j.agwat.2018.01.008

    Article  Google Scholar 

  • Instituto Brasileira de Geografia e Estatística-IBGE (2019) IBGE prevê alta de 5,9% na safra de grãos de 2019. 2019. https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agenciadenoticias/releases/25405-em-agostoibge-preve-alta-de-5-9-na-safra-de-graos-de-2019. Acessed 02 Jan 2021

  • Ikeda H, Shibuya T, Nishiyama M, Nakata Y, Kanayama Y (2017) Physiological mechanisms accounting for the lower incidence of blossom-end rot in tomato introgression line IL8-3 fruit. Hortic J 86:327–333. https://doi.org/10.2503/hortj.OKD-015

    Article  CAS  Google Scholar 

  • Jones HG (2018) Thermal imaging and infrared sensing in plant ecophysiology. Adv Plant Ecophysiol Tech. https://doi.org/10.1007/978-3-319-93233-0_8

    Article  Google Scholar 

  • Kaukoranta T, Murto J, Takala J, Tahvonen R (2005) Detection of water deficit in greenhouse cucumber by infrared thermography and reference surfaces. Sci Hortic 106:447–463. https://doi.org/10.1016/j.scienta.2005.02.026

    Article  Google Scholar 

  • Krieger-Liszka A, Krupinska K, Shimakawa G (2019) The impact of photosynthesis on initiation of leaf senescence. Physiol Plant 166:148–164

    Article  Google Scholar 

  • Li Q, Liu Y, Tian S, Liang Z, Li S, Li Y, Wei M, Zhang D (2019) Effect of supplemental lighting on water transport, photosynthetic carbon gain and water use efficiency in greenhouse tomato. Sci Hortic 256:108–630. https://doi.org/10.1016/j.scienta.2019.108630

    Article  Google Scholar 

  • Lopes WAR, Negreiros MZ, Dombroski JLD, Rodrigues GSO, Soares AM, Araújo AP (2011) Análise do crecimiento de tomate ‘SM-16’ cultivado sob diferentes coberturas de solo. Hortic Bras 29:554–561. https://doi.org/10.1590/S0102-05362011000400019

    Article  Google Scholar 

  • Luo H, Li F (2018) Tomato yield, quality and water use efficiency under different drip fertigation strategies. Sci Hort 235:181–188

    Article  Google Scholar 

  • Malavolta E, Vitti GC, Oliveira SA (1997) Avaliação do estado nutricional das plantas. Princípios e aplicações. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz, São Paulo

  • Mantovani EC (2001) Avalia: programa de avaliação da irrigação por aspersão e localizada. Universidade Federal de Viçosa, Viçosa, Brasil

    Google Scholar 

  • Marouelli WA, Silva WLC (2006) Irrigação por gotejamento do tomateiro industrial durante o estádio de frutificação, na região de cerrado. Hortic Bras 24:342–346

    Article  Google Scholar 

  • Marouelli WA, Silva-Ribeiro H, Madeira NR (2006) Uso de água e produção de tomateiro para processamento em sistema de plantio direto com palhada. Pesqui Agropecu Bras 41:1399–1404

    Article  Google Scholar 

  • Malheiros SM, Silva ÊFDF, de Medeiros PR, Pedrosa EM, Rolim MM, Santos AN (2012) Cultivo hidropônico detomate cereja utilizando-se efluente tratado de uma indústria de sorvete. Rev Bras Eng Agr Amb 16:1085–1092

    Article  Google Scholar 

  • Martins AP, Costa SEVGA, Anghinoni I, Kunrath TR, Cecagno D, Reichert JM, Balerini F, Dillenburg LR, Carvalho PCF (2016) Soil moisture and soybean physiology affected by drought in an integrated crop-livestock system. Pesqui Agropecu Bras 51:978–989. https://doi.org/10.1590/S0100-204X2016000800010

    Article  Google Scholar 

  • Matos RM, Silva PF, Dantas Neto J (2016) Parâmetros produtivos do tomate cereja em diferentes níveis de irrigação e tipos de adubação. J Agron Sci 5:108–119

    Google Scholar 

  • Ministerio da Agricultura e Pecuária e Abastecimento (MAPA) (2009). Instrução Normativa, no 25, de 23 de julho de. Available in http://sistemasweb.agricultura.gov.br/sislegis/action/. Accessed 07 Mar 2021

  • Moura MSB, Souza LSB, Oliveira LDS, Freire-Silva TG, Yuri JE (2017) Biometria e eficiência do uso da água em tomate cereja no semiárido. Agrometeor 25:163–171

    Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  • Mueller S, Feltrim AL, Suzuki S, Wamser AF, Valmorbida J (2010) Avaliação de doses de fósforo na cultura dotomateiro. Hort Bras 28:3940–3945

    Google Scholar 

  • Nangare DD, Singh Y, Kumar PS, Minhas OS (2016) Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric Water Manage 171:73–79. https://doi.org/10.1016/j.agwat.2016.03.016

    Article  Google Scholar 

  • Nogueira A, Martinez CA, Ferreira LL, Prado CHBA (2004) Photosynthesis and water use efficiency in twenty tropicaltree species of differing succession status in a Brazilian reforestation. Photosynthetica 42:351–356

    Article  CAS  Google Scholar 

  • Parveen A, Rai GK, Mushtaq M, Singh M, Rai PK, Rai SK, Kundoo AA (2019) Deciphering the morphological, physiological and biochemical mechanism associated with drought stress tolerance in tomato genotypes. Int J Curr Microbiol Appl Sci 8:227–255

    Article  CAS  Google Scholar 

  • Pask AJD, Pietragalla J, Mullan DM, Reynolds MP (2012) Physiological Breeding II: A field guide to wheat phenotyping. In: Pierre CS, Arce VT (eds) Osmotic adjustment. DF CIMMYT, México, p 24

    Google Scholar 

  • Pelá A, Rodrigues MS, Santana JS, Teixeira IR (2009) Fontes de fósforo para adubação foliar na cultura do feijoeiro. Sci Agrar 10:313–318

    Google Scholar 

  • Pinzón-Torres JA, Schiavinato MA (2008) Crescimento e fotossíntese em quatro leguminosas arbóreas. Hoehnea 35:395–404

    Article  Google Scholar 

  • Rabelo KCC (2015) Fertilizantes organomineral e mineral: aspectos fitotécnicos na cultura do tomate industrial. Universidade Federal de Goiás, M.Sc. Diss

    Google Scholar 

  • Ramírez AJF, Coelho RD, Pizani MAM, Silva CJ (2015) Determinação do índice de estresse hídrico em tomateiros cereja (Lycopersicum solanum var. cerasiforme) com câmara infravermelha. Rev Bras Agric Irrig 9:218–224. https://doi.org/10.7127/RBAI.V9N400356

    Article  Google Scholar 

  • Ripoll J, Urban L, Brunel B, Bertin N (2016) Water deficit effects on tomato quality depend on fruit developmental stage and genotype. Plant Physiol 190:26–35. https://doi.org/10.1016/j.jplph.2015.10.006

    Article  CAS  Google Scholar 

  • Sampaio AHR, Coelho Filho MA, Coelho EF, Daniel R (2014) Indicadores fisiológicos da lima ácida ‘Tahiti’ submetida à irrigação deficitária com secamento parcial de raiz. Irriga 19:292–301

    Article  Google Scholar 

  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araujo Filho JC, Oliveira JB, Cunha TJF (2018) Sistema Brasileiro de Classificação de Solos. 5. Ed. Rev. e ampl. DF Embrapa, Brasília

    Google Scholar 

  • Scholander PF, Hammel HT, Hemingsen EA, Bradstreet ED (1965) Hydrostatic pressure and osmotic potentials in leaves of mangroves and some other plants. Natl Acad Sci USA Proc 51:119–125

    Google Scholar 

  • Silva DJH, Vale FXR (2007) Tomate: tecnologia e produção. UFV, Viçosa, p 7

    Google Scholar 

  • Silva Júnior JF (2012) Desenvolvimento do tomate em diferentes níveis de irrigação e de doses de salinidade. Dissertation, Universidade Estadual Paulista

  • Silva LC, Fideles J, Beltrão NEM, Rao TVR (1998) Variação diurna da resistência estomática à difusão de vapor d’água em amendoim irrigado. Pesqui Agropecu Bras 33:269–276

    Google Scholar 

  • Soares LAA, Lima GS, Brito MEB, Sá FV, Araújo TT (2011) Crescimento do tomateiro e qualidade física dos frutos sob estresse hídrico em ambiente protegido. Rev Verde Agroecol Desenvolv Sustent 6:203–212

    Google Scholar 

  • Sousa DMG, Lobato E (2004) Cerrado: correção do solo e adubação. 2.ed. Embrapa Informação Tecnológica, Brasília, p 416

    Google Scholar 

  • Steppe K (2018) The potential of the tree water potential. Tree Physiol 38:937–940. https://doi.org/10.1093/treephys/tpy064

    Article  PubMed  Google Scholar 

  • Taiz L, Zeiger E, Moller I, Murphy A (2017) Fisiologia e desenvolvimento vegetal, 6th edn. Porto Alegre, Artmed, p 88

    Google Scholar 

  • Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (2017) Manual de Métodos de Análise de Solo, 3rd edn. DF Embrapa, Embrapa, p 57

    Google Scholar 

  • van Bezouw RF, Keurentjes JJ, Harbinson J, Aarts MG (2019) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant J 97:112–133

    Article  PubMed  PubMed Central  Google Scholar 

  • van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Wang X, Zhao C, Guo N, Li Y, Jian S, Yu K (2015) Determining the canopy water stress for spring wheat using canopy hyperspectral reflectance data in loess plateau semiarid regions. Spectrosc Lett 48:492–498. https://doi.org/10.1080/00387010.2014.909495

    Article  CAS  Google Scholar 

  • Wang Y, Zhang X, Zhang X, Shao L, Chen S, Liu X (2016) Soil water regime affecting correlation of carbon isotope discrimination with yield and water-use efficiency of winter wheat. Crop Sci 56:760–772. https://doi.org/10.2135/cropsci2014.11.0793

    Article  CAS  Google Scholar 

  • Zhou R, Kong L, Yu X, Ottosen CO, Zhao T, Jiang F, Wu Z (2019) Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiol Plant 41:1–11

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq); the Coordination for the Improvement for Higher Level Personnel (CAPES); the Research Support Foundation of the State of Goiás (FAPEG); the Ministry of Science, Technology, Innovation, and Communications (MCTIC); and the Federal Institute of Education, Science, and Technology Goiano (IF Goiano)—Campus Rio Verde, for the financial and structural support to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswaldo Palma Lopes Sobrinho.

Additional information

Communicated by M. Prasad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobrinho, O.P.L., dos Santos, L.N.S., da Silva, A.A. et al. Physiological responses of tomato plants subjected to various combinations of irrigation levels with mineral and organomineral sources of phosphorus. Acta Physiol Plant 44, 108 (2022). https://doi.org/10.1007/s11738-022-03432-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-022-03432-4

Keywords

Navigation