Skip to main content

Adventitious rhizogenesis in Basilicum polystachyon (L.) Moench callus and HPLC analysis of phenolic acids

Abstract

Key message

This is the successful report of adventitious rhizogenesis from leaf segment of in vitro grown Basilicum polystachyon (L.) Moench in MS medium supplemented with NAA and BAP. The presence of phenolic acids, viz., rosmarinic acid and p-coumaric acid in adventitious root extracts of rhizogenic callus is also a significant observation.

Abstract

Rhizogenic callus was induced directly from the leaf segment explants of in vitro grown Basilicum polystachyon (L) Moench. Light green and compact callus with adventitious roots was induced on MS medium supplemented with 1 mg L−1 NAA and 1 mg L−1 BAP. MS medium with addition of 1.0 mg L−1 2,4-D and 1.0 mg L−1 BAP induced white and compact callus. Maximum callus induction efficiency (98%) was obtained in MS medium supplemented with NAA and BAP. The highest numbers of adventitious roots (24 ± 0.35) per callus were regenerated on MS medium supplemented with 1 mg L−1 of NAA and 1 mg L−1 of BAP. The adventitious root origination was studied with stereo-microscope and field emission scanning electron microscope. The induced rhizogenic callus was also a good source of phenolic acids. The presence of phenolic acids such as rosmarinic acid (10 µg/ml) and p-coumaric acid (14 µg/ml) in adventitious roots was determined by RP-HPLC analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

2, 4-D:

2,4-Dichlorophenoxyacetic acid

ANOVA:

Analysis of variance

BAP:

6-Benzylaminopurine

FESEM:

Field emission scanning electron microscope

MS:

Murashige and Skoog

NAA:

1-Naphthaleneacetic acid

PGR:

Plant growth regulator

PTFE:

Polytetrafluoroethylene

RP-HPLC:

Reversed-phase high-performance liquid chromatography

SE:

Standard error

TLC:

Thin-layer chromatography

References

  1. Arafeh RM, Shibli R, Al-mahmoud M, Shatnawi M (2006) Callusing, cell suspension culture and secondary metabolites production in Persian oregano (Origanum vulgare L.) and Arabian Oregano (O. syriacum L.). Jordan J Agric Sci 2:274–282

    Google Scholar 

  2. Bauer N, Leljak-Levanic D, Jelaska S (2004) Rosmarinic acid synthesis in transformed callus culture of Coleus blumei Benth. Zeitschrift Fur Naturforsch - Sect C J Biosci 59:554–560. https://doi.org/10.1515/znc-2004-7-819

    CAS  Article  Google Scholar 

  3. Bulgakov VP, Inyushkina YV, Fedoreyev SA (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 32:203–217. https://doi.org/10.3109/07388551.2011.596804

    CAS  Article  PubMed  Google Scholar 

  4. Castillo AM, Egana B, Sanz JM, Cistue L (1998) Somatic embryogenesis and plant regeneration from barley cultivars grown in Spain. Plant Cell Rep 17:902–906. https://doi.org/10.1007/s002990050506

    CAS  Article  PubMed  Google Scholar 

  5. Chakraborty D, Mandal SM, Chakraborty J et al (2007) Antimicrobial activity of leaf extract of Basilicum polystachyon (L) Moench. Indian J Exp Biol 45:744–748

    CAS  PubMed  Google Scholar 

  6. Chakraborty D, Bandyopadhyay A, Bandopadhyay S et al (2010) Use of response surface methodology for optimization of a shoot regeneration protocol in Basilicum polystachyon. In Vitro Cell Dev Biol - Plant 46:451–459. https://doi.org/10.1007/s11627-010-9309-4

    Article  Google Scholar 

  7. Chandra I, Bhanja P (2002) Study of organogenesis in vitro from callus tissue of Flacourtia jangomas (Lour.) Raeusch through scanning electron microscopy. Curr Sci 83:476–479

    Google Scholar 

  8. Cown MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–570. https://doi.org/10.1128/CMR.12.4.564

    Article  Google Scholar 

  9. Das S, Sultana KW, Chandra I (2020) In vitro micropropagation of Basilicum polystachyon (L.) Moench and identification of endogenous auxin through HPLC. Plant Cell Tiss Organ Cult 141:633–641. https://doi.org/10.1007/s11240-020-01824-3

    CAS  Article  Google Scholar 

  10. Delpierre N, Boccon-Gibod J (1992) An extensive hairy root production precedes shoot regeneration in protoplast-derived calli of cauliflower (Brassica oleracea var. botrytis). Plant Cell Rep 11:351–354. https://doi.org/10.1007/BF00233364

    CAS  Article  PubMed  Google Scholar 

  11. Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42. https://doi.org/10.2307/3001478

    Article  Google Scholar 

  12. Esau K (1965) Plant anatomy. John Wiley and Sons

    Google Scholar 

  13. Fay M (1992) Conservation of rare and endangered plants using in vitro methods. In Vitro Cell Dev Biol Plant 28:1–4. https://doi.org/10.1007/BF02632183

    Article  Google Scholar 

  14. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185. https://doi.org/10.1007/s00253-007-0856-5

    CAS  Article  PubMed  Google Scholar 

  15. Hakkim LF, Kalyani S, Essa M, Girija S, Song H (2011) Production of rosmarinic acid in Ocimum sanctum (L.) cell suspension cultures by the influence of growth regulators. Int J Biol Med Res 2:1158–1161

    Google Scholar 

  16. Hippolyte I, Marin B, Baccou JC, Jonard R (1992) Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep 11:109–112. https://doi.org/10.1007/BF00232160

    CAS  Article  PubMed  Google Scholar 

  17. Hoseinpanahi S, Majdi M, Mirzaghaderi G (2016) Effects of growth regulators on in vitro callogenesis and regeneration of black cumin (Nigella sativa). Iran J Rangel Forest Plant Breed 24:232–241

    Google Scholar 

  18. Jiang W, Myeong-Je C, Lemaux PG (1998) Improved callus quality and prolonged regenerability in model and recalcitrant barley (Hordeum vulgare L.) cultivars. Plant Biotechnol 15:63–69. https://doi.org/10.5511/plantbiotechnology.15.63

    CAS  Article  Google Scholar 

  19. Karakas FP, Turker AU (2016) Improvement of shoot proliferation and comparison of secondary metabolites in shoot and callus cultures of Phlomis armeniaca by LC-ESI-MS/MS analysis. In Vitro Cell Dev Biol - Plant 52:608–618. https://doi.org/10.1007/s11627-016-9792-3

    CAS  Article  Google Scholar 

  20. Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compound. Molecules 18:2328–2375. https://doi.org/10.3390/molecules18022328

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Kiferle C, Lucchesini M, Maggini R et al (2014) In vitro culture of sweet basil: gas exchanges, growth, and rosmarinic acid production. Biol Plant 58:601–610. https://doi.org/10.1007/s10535-014-0434-5

    CAS  Article  Google Scholar 

  22. Mallón R, Rodríguez-Oubiña J, González ML (2010) In vitro propagation of the endangered plant Centaurea ultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis. Plant Cell Tiss Organ Cult 101:31–39. https://doi.org/10.1007/s11240-009-9659-y

    Article  Google Scholar 

  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    CAS  Article  Google Scholar 

  24. Pattnaik S, Chand PK (1996) In vitro propagation of the medicinal herbs Ocimum americanum L. syn. O. canum Sims. (hoary basil) and Ocimum sanctum L. (holy basil). Plant Cell Rep 15:846–850. https://doi.org/10.1007/BF00233154

    CAS  Article  PubMed  Google Scholar 

  25. Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125. https://doi.org/10.1016/s0031-9422(02)00513-7

    CAS  Article  PubMed  Google Scholar 

  26. Poornima K, Palanisamy CP, Sundaram S, Kanniappan GV (2017) Chromatographic fingerprinting analysis of secondary metabolites present in ethanolic extract of Tabernaemontana divaricata (L.) R. Br. by HPTLC Technique. Anal Chem Lett 7:20–29. https://doi.org/10.1080/22297928.2017.1284608

    CAS  Article  Google Scholar 

  27. Rumyantseva NI, Salnikov VV, Lebedeva VV (2005) Structural changes of cell surface in callus of Fagopyrum esculentum Moench. during induction of morphogenesis. Russ J Plant Physiol 52:381–387. https://doi.org/10.1007/s11183-005-0057-y

    CAS  Article  Google Scholar 

  28. Rumyantseva NI (1990) Morphogenesis in the tissue culture of buckwheat: theoretical and applied aspects. Cand Sci (Biol) Dissertation, Kazan: KIBB KNTs RAN.

  29. Sahoo Y, Pattnaik SK, Chand PK (1997) In vitro clonal propagation of an aromatic medicinal herb Ocimum basilicum L. (sweet basil) by axillary shoot proliferation. In Vitro Cell Dev Biol - Plant 33:293–296. https://doi.org/10.1007/s11627-997-0053-3

    Article  Google Scholar 

  30. Sahraroo A, Babalar M, Mirjalili MH et al (2014) In vitro callus induction and rosmarinic acid quantification in callus culture of Satureja khuzistanica Jamzad (Lamiaceae). Iran J Pharm Res 13:1445–1454. https://doi.org/10.22037/ijpr.2014.1570

    Article  Google Scholar 

  31. Shu XGX (1994) Basilicum Moench. Suppl Meth Flora of China 17:295–296

    Google Scholar 

  32. Shwe SS, Leung DWM (2020) Plant regeneration from Eucalyptus bosistoana callus culture. In Vitro Cell Dev Biol - Plant 56:718–725. https://doi.org/10.1007/s11627-020-10093-w

    CAS  Article  Google Scholar 

  33. Simoes C, Bizarri CHB, Cordeiro LS, De Castro TC, Coutada LCM, Da Silva AJR et al (2009) Anthocyanin production in callus cultures of Cleome rosea: Modulation by culture conditions and characterization of pigments by means of HPLC-DAD/ESIMS. Plant Physiol Biochem 47:895–990. https://doi.org/10.1016/j.plaphy.2009.06.005

    CAS  Article  PubMed  Google Scholar 

  34. Singh VK, Chaudhuri S, Maity GG, Mondal M (2018) Basilicum polystachyon (L.) Moench (Lamiaceae )—a rare, medicinally important plant from West Bengal and its addition to the flora of Haryana and Uttarakhand. J Econ Environ Soc 2(1):34–40

    Google Scholar 

  35. Siva G, Sivakumar S, Prem Kumar G et al (2015) Optimization of elicitation condition with Jasmonic acid, characterization and antimicrobial activity of Psoralen from direct regenerated plants of Psoralea corylifolia L. Biocatal Agric Biotechnol 4:624–631. https://doi.org/10.1016/j.bcab.2015.10.012

    Article  Google Scholar 

  36. Skała E, Wysokińska H (2004) In vitro regeneration of Salvia nemorosa L. from shoot tips and leaf explants. Vitro Cell Dev Biol Plant 40:596–602. https://doi.org/10.1079/IVP2004580

    CAS  Article  Google Scholar 

  37. Soh WY, Choi PS, Cho DY (1998) Effects of cytokinin on adventitious root formation in callus cultures of Vigna unguiculata (L.) walp. In Vitro Cell Dev Biol Plant 34:189–195. https://doi.org/10.1007/BF02822707

    CAS  Article  Google Scholar 

  38. Srivastava S, Conlan XA, Adholeya A, Cahill DM (2016) Elite hairy roots of Ocimum basilicum as a new source of rosmarinic acid and antioxidants. Plant Cell Tiss Organ Cult 126:19–32. https://doi.org/10.1007/s11240-016-0973-x

    CAS  Article  Google Scholar 

  39. Sultana KW, Chandra I, Roy A (2020) Callus induction and indirect regeneration of Thunbergia coccinea Wall. Plant Physiol Rep 25:58–64. https://doi.org/10.1007/s40502-020-00501-z

    CAS  Article  Google Scholar 

  40. Tan YP, Houston SD, Modhiran N et al (2019) Stachyonic Acid: A dengue virus inhibitor from Basilicum polystachyon. Chem A Eur J 25:5664–5667. https://doi.org/10.1002/chem.201900591

    CAS  Article  Google Scholar 

  41. Tsoktouridis G, Tsiamis G, Koutinas N, Mantell S (2014) Molecular detection of bacteria in plant tissues, Using universal 16S ribosomal DNA degenerated primers. Biotechnol Biotechnol Equip 28:583–591. https://doi.org/10.1080/13102818.2014.937139

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Wagner H, Bladt S (2004) A thin layer chromatography atlas. Plant drug analysis. Springer

    Google Scholar 

  43. Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot (London) 93:3–11. https://doi.org/10.1093/aob/mch011

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the Department of Biotechnology, The University of Burdwan, Burdwan 713104, WB, India for giving infrastructural facilities. The authors also acknowledge DST PURSE Phase-II, New Delhi, Government of India for providing instrumental facilities. S.D. is thankful to the Government of West Bengal, India for financial assistance through the state-funded fellowship. We must convey our sincere thanks to Mr. Kaushik Sarkar, Technical Assistant, Grade-I, Department of Biotechnology, The University of Burdwan, Burdwan 713104, WB, India for HPLC analysis.

Author information

Affiliations

Authors

Contributions

The authors have made the following declarations regarding their contributions: SD and IC conceived the design of the experiments. SD and to some extent KWS monitored the research work. SD collected and analyzed sample data. SD contributed mainly to writing the manuscript in its final form. All the authors read and approved the final manuscript. This is a part of SD’s Ph.D. thesis work.

Corresponding author

Correspondence to Indrani Chandra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. Lambardi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sultana, K.W. & Chandra, I. Adventitious rhizogenesis in Basilicum polystachyon (L.) Moench callus and HPLC analysis of phenolic acids. Acta Physiol Plant 43, 146 (2021). https://doi.org/10.1007/s11738-021-03317-y

Download citation

Keywords

  • Basilicum polystachyon
  • Callus
  • Adventitious root
  • Rhizogenic callus
  • Phenolic acids