Skip to main content
Log in

Understanding straighthead: a complex physiological disorder of rice (Oryza sativa L.)

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

A conventionally perceived rice physiological disorder called straighthead reflects various associated chronic physiological symptoms and its cause of occurrence is still under investigation. In fact, reported paddy cultivation losses estimated worldwide is incredible. Further, rice crops that experience various physiological symptoms can be induced with arsenical substances under artificial conditions and per se related to soil conditions influenced by flooding. Also, the exposure to dimethyl arsenate (DMA) to rice plants has been proved to be lesser in toxicity than inorganic arsenic and has potential to accumulate in higher doses in soils as a result of prolonged use of DMA containing herbicides. Characterization of this physiological disorder is recognized with archetypal sterile florets, distorted palea and lemma symptoms. The panicles often remain empty or bear unfilled grains, while the empty hulls generally are distorted into a crescent or parrot-beak shape, hence named as straighthead. Strategies like drain and dry irrigation are currently taken into consideration to control the episodes of straighthead. Few studies have been attempted to study the impact of this disorder on rice grain yield and quality from different parts of world and thereafter observations secured produces conflicting results. However, resistant cultivars can be produced with efficacy to curtail this disease through the introduction of QTL identification approach for conferring resistance. Thus, this review intended to focus exclusively on the epidemiology, symptomatology, historical background, etiology and control measures so as to compile up all the available literature in a reliable review article structure. Further, research with detailed protocols is recommended to study the cumulative effects of natural and arsenic induced straighthead on rice grain quality/development, its correlation with various agro-ecological factors, impact on host metabolic machinery so as to provide possible control measures to develop better control strategies against this malady.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedin MJ, Cotter-Howells J, Meharg AA (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240:311–319

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments, 2nd edn. Springer, New York, p 867

    Book  Google Scholar 

  • Agrama HA, Yan WG (2009) Association mapping of straighthead disorder induced by arsenic in Oryza sativa. Plant Breed 128(6):551–558

    Article  Google Scholar 

  • Agrama HA, Yan WG (2010) Genetic diversity and relatedness of rice cultivars resistant to straighthead disorder. Plant Breed 129:304–312

    Article  CAS  Google Scholar 

  • Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19(4):341–356

    Article  Google Scholar 

  • Agrama HA, Yan WG, Jia M, Fjellstrom R, Mcclung AM (2010) Genetic structure associated with diversity and geographic distribution in the USDA rice world collection. Nat Sci 2:247–291

    Google Scholar 

  • Ambak K, Tadano T (1991) Effects of micronutrient application on the growth and occurrence of sterility in barley and rice in a Malaysian deep peat soil. Soil Sci Plant Nutr 37(4):715–714

    Article  CAS  Google Scholar 

  • Atkin JG Jr, Beachell HM, Crane LE (1957) Testing and breeding rice varieties for resistance to straighthead. Int Rice Comm Newslett 7(2):12–14

    Google Scholar 

  • Atkins JG (1974) Rice diseases of the Americas—a review of literature. USDA Agric Handbook 448:58–63

    Google Scholar 

  • Baba I, Harada T (1954) Akiochi, Akagare and straighthead. In: Physiological diseases of rice plant in Japan. Ministry of Agriculture and Forestry, Japanese Government, Tokyo, p 234

    Google Scholar 

  • Baker RS, Barrentine WL, Bowman DH, Hawthorne WL, Pettiet JV (1976) Crop response and arsenic uptake following soil incorporation of MSMA. Weed Sci 24:322–326

    Article  CAS  Google Scholar 

  • Barral-Fraga L, Barral MT, MacNeill KL, Martiñá-Prieto D, Morin S, Rodríguez-Castro MC, Tuulaikhuu B, Guasch H (2020) Biotic and abiotic factors influencing arsenic biogeochemistry and toxicity in fluvial ecosystems: a review. Int J Environ Res Public Health 17(7):2331

    Article  CAS  PubMed Central  Google Scholar 

  • Batten GD, Campbell L, Dunn TS, Lewin LG, Dunn BW (2006) Straighthead in Australian rice crops. IREC Farmers Newslett 173:26–29

    Google Scholar 

  • Beachell HM, Crane LE (1956) Reaction of rice varieties to straight head. Tex Agr Expt Sta Prog Rpt 1865:2

    Google Scholar 

  • Beachell HM, Crane LE (1957) Testing and breeding American rice varieties for resistance to straight head. Int Rice Comm Newslett 6(2):1–4

    Google Scholar 

  • Belefant MHB, Beaty T (2007) Distribution of arsenic and other minerals in rice plants affected by natural straighthead. Agron J 99:1675–1681

    Article  Google Scholar 

  • Bhattacharyya P, Gosh AK, Chakraborty A, Chakrabarti K, Tripathy S, Powell MA (2003) Arsenic uptake by rice and accumulation in soil amended with municipal solid waste compost. Commun Soil Sci Plan Anal 34:2779–2790

    Article  CAS  Google Scholar 

  • Bollich CN, Scott JE (1968) Reduction of rice yields and seed germination by straighthead. Int Rice Comm Newsletter 17(3):45–47

    Google Scholar 

  • Bollich PK, Linscombe SD, Mckenzie KS, Leonards WJ Jr, Rawls SM, Walker DM (1989) Evaluating commercial rice varieties and experimental lines for straighthead. Louisiana Agri 33(2):4–5

    Google Scholar 

  • Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2(2):91–99

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD, Tuli R (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74(5):688–702

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Li L, Huang K, Zhang J, Xie WY, Lu Y, Dong X, Zhao FJ (2019) Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils. ISME J 13:2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury B, Chowdhury S, Biswas AK (2011) Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. J Plant Interact 6(1):15–24

    Article  CAS  Google Scholar 

  • Collier JS (1912) Rice Blight, Illinois Agricultural Experimental Station Circular 156. University of Illinois, Urbana, Ill, USA

    Google Scholar 

  • Cunha JMA, Baptista JE (1958) Estudoda branca do arroz I Combated a doenca. Agron Lusit 20:17–64

    CAS  Google Scholar 

  • Dilday RH, Slaton NA, Gibbons JW, Moldenhauer KA, Yan WG (1999) Straighthead of rice as influenced by arsenic and nitrogen. BR Wells Rice Res Stud 476:201–214

    Google Scholar 

  • Dilday RH, Yan WG, Slaton NA, Gibbons JW, Moldenhauer KA (2001) Straighthead of rice as influenced by arsenic and nitrogen. Fayetteville: University of Arkansas. Agric Exp Sta 485:124–131

    Google Scholar 

  • Dobermann A, Fairhurst TH (2000) Nutrient disorders and nutrient management. Potash and Phosphate Institute, Potash and Phosphate Institute of Canada and International Rice Research Institute, Singapore, p 191

    Google Scholar 

  • Duncan E, Maher WA, Foster SD, Krikowa F, O’Sullivan CA, Roper MM (2017) Dimethyl arsenate (DMA) exposure influences germination rates, arsenic uptake and arsenic species formation in wheat. Chemosphere 181:44–54

    Article  CAS  PubMed  Google Scholar 

  • Dunn BW, Batten GD, Dunn TS, Subasinghe R, Williams RL (2006) Nitrogen fertiliser alleviates the disorder straighthead in Australian rice. Aust J Exp Agric 46(8):1077–1083

    Article  Google Scholar 

  • Evatt NS, Atkins JG (1957) Chemical control of straighthead in rice. Rice J 60(5):26–37

    Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frans R, Horton D, Burdette L (1988) Influence of MSMA on straighthead, arsenic uptake and growth response in rice. Univ. of Arkansas. Agri Exp Sta 302:1–12

    Google Scholar 

  • Gillman GP, Sumpter EA (1986) Modification to the compulsive exchange method for measuring exchange characteristics of soils. Aust J Soil Res 24:61–66

    Article  CAS  Google Scholar 

  • Gilmour JT, Wells BR (1980) Residual effects of MSMA on sterility in rice cultivars. Agron J 72:1066–1067

    Article  CAS  Google Scholar 

  • Goddard KAB, Hopkins PJ, Hall JM, Witte JS (2000) Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms five populations. Am J Hum Genet 66(1):216–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunawardena TA, Fukai S, Blamey FPC (2003) Low-temperature-induced spikelet sterility in rice, I: Nitrogen fertilisation and sensitive reproductive period. Aust J Agric Res 54:937–946

    Article  Google Scholar 

  • Hewitt JL (1912) Rice blight. Ark Agric Exp Sta Bul 110:447–459

  • Horton DK, Frans RE, Cothren T (1983) MSMA-induced straighthead in rice (Oryza sativa) and effect upon metabolism and yield. Weed Sci 31:648–651

    Article  CAS  Google Scholar 

  • Hua B, Yan W, Yang J (2013) Response of rice genotype to straighthead disease as influenced by arsenic level and water management practices in soil. Sci Total Environ 442:432–436

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto R (1969) Straighthead of rice plants affected by functional abnormality of thiol-compound metabolism. Memoirs Tokoyo Univ Agric Tokyo 13:63–80

    Google Scholar 

  • Karim AQMB, Vlamis J (1962) Micronutrient deficiency symptoms of rice grown in nutrient culture solutions. Plant Soil 16:347–360

    Article  CAS  Google Scholar 

  • Kataoka T, Matsuo K, Kon T, Komatsu Y (1983) Factors of the occurrence of straighthead 1: the occurrence of straighthead by the application of barley straws in paddy fields. Jap J Crop Sci 52:349–354

    Article  Google Scholar 

  • Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J (2018) Arsenic speciation dynamics in paddy rice soil-water environment: sources, physic-chemical, and biological factors—a review. Water Res 140:403–414

    Article  CAS  PubMed  Google Scholar 

  • Le XC, Ma M, Cullen WR, Aposhian HV, Lu X, Zheng B (2000) Determination of monomethylarsonous acid, a key arsenic methylation intermediate, in human urine. Environ Health Perspect 108(11):1015–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Hu B, Pan X, Zhang N, Wu D (2017) Association analysis of arsenic-induced straighthead in rice (Oryza sativa L.) based on the selected population with a modified model. BioMed Res Int. https://doi.org/10.1155/2017/7641362

    Article  PubMed  PubMed Central  Google Scholar 

  • Limmer MA, Seyfferth AL (2020) The role of small molecules in restricting rice accumulation of dimethylarsinic acid. Plant Soil. https://doi.org/10.1007/s11104-019-04414-1

    Article  Google Scholar 

  • Limmer MA, Wise P, Dykes GE, Seyfferth AL (2018) Silicon decreases dimethylarsinic acid concentration in rice grain and mitigates straighthead disorder. Environ Sci Technol 52(8):4809–4816

    Article  CAS  PubMed  Google Scholar 

  • Linscombe SD, Jodari F, Bollich PK, Groth DE, White LM, Chu QR, Dunand RT, Sanders DE (2000) Registration of’Cocodrie’ Rice. Crop Sci 40:294

    Article  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. In: incredible anaerobes: from physiology to genomics to fuels. Ann NY Acad Sci 1125:171–189

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, McGrath SP, Zhao FJ (2014) Silicon has opposite effects on the accumulation of inorganic and methylated arsenic species in rice. Plant Soil 376:423–431

    Article  CAS  Google Scholar 

  • Lomax C, Liu WJ, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher W, Foster S, Krikowa F, Donner E, Lombi E (2013) Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: verification using XANES. Environ Sci Technol 47:5821–5827

    Article  CAS  PubMed  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183

    Article  CAS  Google Scholar 

  • Mcnally KL, Bruskiewich R, Mackill D, Buell CR, Leach JE, Leung H (2006) Sequencing multiple and diverse rice cultivars, connecting whole-genome variation with phenotypes. Plant Physiol 141:26–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Olaleye AO, Tabi FO, Ogunkunle AO, Singh BN, Sahrawat KL (2001) Effect of toxic iron concentrations on the growth of lowland rice. J Plant Nutr 24:441–457

    Article  CAS  Google Scholar 

  • Pan X, Zhang Q, Yan WG, Jia M, Jackson A, Li X, Jia L, Huang B, Xu P, Correavictoria F, Li S (2012) Development of genetic markers linked to straighthead resistance through fine mapping in rice (Oryza sativa L.). PLOS ONE 7(12):e52540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Punshon T, Jackson BP, Mehargc AA, Warczacka T, Scheckeld K, Guerinot ML (2016) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.12.111

    Article  PubMed  PubMed Central  Google Scholar 

  • Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581:209–220

    Article  PubMed  CAS  Google Scholar 

  • Qian YW, Liu JZ (1993) Rice germplasm resources in Guangdong Province. In: Ying CS (ed) Rice germplasm resources in China. China Agricultural Science and Technology Press, Beijing, p 267

    Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang GJ, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Nat Acad Sci USA 103:2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quereau FC (1916) Straighthead in rice. La Agr Expt Sta Ann Rpt 1915:31

    Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Miah MAM, Tasmin A (2008) Straighthead disease of rice (Oryza sativa L.) induced by arsenic toxicity. Environ Exp Bot 62:54–59

    Article  CAS  Google Scholar 

  • Rahman MA, Rahman MM, Hasegawa H (2012) Arsenic-induced straighthead: an impending threat to sustainable rice production in South and South-East Asia! Bull Environ Contam Toxicol 88(3):311–315

    Article  PubMed  CAS  Google Scholar 

  • Rasamivelona A, Gravois KA, Dilday RH (1995) Heritability and genotype X environment interactions for straighthead in rice. Crop Sci 35:1365–1368

    Article  Google Scholar 

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne, Australia, p 330

    Google Scholar 

  • Ricardo CPP, Cunha JMAE (1968) Study of branca: a physiological disease of rice II. Relation between the soil redox potential and the disease: action of copper sulfate. Agron Lusit 29(1):57–97

    Google Scholar 

  • Rice Technical Working Group (RTWG) (2002) Rice variety acreage tables. Proc. 29th Conf. Little Rock. AR Feb 24–27:18–31

    Google Scholar 

  • Rout GR, Das P (2002) Rapid hydroponic screening for molybdenum tolerance in rice through morphological and biochemical analysis. Rostlinna Vyroba 48:505–512

    CAS  Google Scholar 

  • Sachs RM, Michael JL (1971) Comparative phytotoxicity among four arsenical herbicides. Weed Sci 19:558–564

    Article  CAS  Google Scholar 

  • Seyfferth AL, Limmer MA, Dykes GE (2018) On the use of silicon as an agronomic mitigation strategy to decrease arsenic uptake by rice. Adv Agron 149:49–91

    Article  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67(3):447–453

    Article  CAS  Google Scholar 

  • Shi GL, Zhu S, Meng JR, Qian M, Yang N, Lou LQ, Cai QS (2015) Variation in arsenic accumulation and translocation among wheat cultivars: the relationship between arsenic accumulation, efflux by wheat roots and arsenate tolerance of wheat seedlings. J Hazard Mater 289:190–196

    Article  CAS  PubMed  Google Scholar 

  • Slaton NA, Wilson CE, Ntamatungiro S, Norman RJ, Boothe DL (2000) Evaluation of new varieties to straighthead susceptibility. In: Norman RJ, Beyrouty CA, Wells BR (eds) Rice research studies 1999. University of Arkansas, Fayetteville, pp 313–317

    Google Scholar 

  • Slaton NA, Wilson CE, Norman RJ, DeLong RE (2006) Correlation of soil pH and Mehlich-3 phosphorus with postflood rice phosphorus concentrations in Arkansas. Commun Soil Sci Plant Anal 37:2819–2831

    Article  CAS  Google Scholar 

  • Smith R, Heriot RI, Johnston EJ (1953) The soil and land-use survey of the Wakool Irrigation District NSW. Council for Scientific Industrial and Research, Melbourne, p 169

    Google Scholar 

  • Somenahally A, Hollister EB, Yan WG, Gentry TJ, Loeppert RH (2011) Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice rhizosphere compartments. Environ Sci Technol 45:8328–8335

    Article  CAS  PubMed  Google Scholar 

  • Stich B, Mohring J, Piepho H, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genet 178(3):1745–1754

    Article  Google Scholar 

  • Takeoka Y, Tsutsui Y, Matsuo K (1990) Morphogenetic alterations of spikelets on a straighthead panicle in rice. Jap J Crop Sci 59:785–791

    Article  Google Scholar 

  • Tang Z, Wang Y, Gao A, Ji Y, Yang B, Wang P, Tang Z, Zhao FL (2020) Dimethylarsinic acid is the causal agent inducing rice straighthead disease. J Exp Bot. https://doi.org/10.1093/jxb/eraa253

    Article  PubMed  PubMed Central  Google Scholar 

  • Tisdale WH, Jenkins JM (1921) Rice Straighthead and Its Control Phytopathol 11:42–43

    Google Scholar 

  • Todd EH, Beachell HM (1954) Straighthead of rice as influenced by varieties and irrigation practices. Rice J 57(6):20–22

    Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate-associated and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J Exp Bot 40(210):119–128

    Article  CAS  Google Scholar 

  • Wang P, Sun G, Jia Y, Meharg AA, Zhu Y (2014) A review on completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment. J Environ Sci 26(2):371–381

    Article  Google Scholar 

  • Wells BR, Gilmour JT (1977) Sterility in rice cultivars as influenced by MSMA rate and water management. Agron J 69:451–454

    Article  CAS  Google Scholar 

  • Wilson CE, Slaton NA, Frizzell DL, Boothe DL, Ntamatungiro S, Norman RJ (2001) Tolerance of new rice cultivars to straighthead. In: Norman RJ, Meullenet JF (eds) BR Wells rice research studies 2000. University of Arkansas, Fayetteville, pp 428–436

    Google Scholar 

  • Wilson CE, Runsick CK, Mazzanti R (2009) Trends in Arkansas rice production. In: Norman RJ, Moldenhauer KAK (eds) BR Wells rice research studies 2009. University of Arkansas, Fayetteville, pp 11–21

    Google Scholar 

  • Wingui Y, Dilday RH, Tai TH, Gibbons JW, McNew RW, Rutger JN (2005) Differential response of rice germplasm to straighthead induced by arsenic. Crop Sci 45:1223–1228

    Article  CAS  Google Scholar 

  • Yan WG, Rutger JN, Moldenhauer KAK, Gibbons JW (2002) Straighthead resistant germplasm introduced from China. In: Norman RJ, Meullenet JF (eds) BR Wells rice research studies 2001. University of Arkansas, Fayetteville, pp 359–368

    Google Scholar 

  • Yan WG, Dilday RB, Tai TH, Gibbons JW, Mcnew RW, Rutger JN (2005) Differential response of rice germplasm to straighthead induced by arsenic. Crop Sci 45(4):1223–1228

    Article  CAS  Google Scholar 

  • Yan WG, Agrama HA, Slaton NA, Gibbons JW (2008) Soil and plant minerals associated with rice straighthead disorder induced by arsenic. Agron J 100:1655–1661

    Article  CAS  Google Scholar 

  • Yan WG, Agrama H, Jia M, Fjellstrom R, Mcclung AM (2010a) Geographic description of genetic diversity and relationships in the USDA rice world collection. Crop Sci 50:2406–2417

    Article  Google Scholar 

  • Yan WG, Correa-victoria FF, Marin A, Marassi J, Li X, Re J (2010b) Comparative study on induced straighthead in the U.S. with natural straighthead in Argentina. In: Proceedings 33rd Rice Technical Working Group conference Feb, p 22–25

  • Yang C, Yang L, Yang Y, Ouyang Z (2004) Rice root growth and nutrient uptake as influenced by organic matter in continuously and alternately flooded paddy soils. Agric Water Manag 70:67–81

    Article  Google Scholar 

  • Yoshinaga M, Rosen BP (2014) A C.As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proc Nat Acad Sci USA 111:7701–7706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu RQ, Reinfelder JR, Hines ME, Barkay T (2018) Syntrophic pathways for microbial mercury methylation. ISME J 12:1826–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarcinas BA, Cartwright B, Spouncer LR (1987) Nitric acid digestion and multielement analysis of plant material by inductively coupled plasma spectrometry. Commun Soil Sci Plant Anal 18:131–146

    Article  CAS  Google Scholar 

  • Zhao FJ, Harris E, Yan J, Ma J, Wu L, Liu W, McGrath SP, Zhou J, Zhu YG (2013) Arsenic methylation in soils and its relationship with microbial arsm abundance and diversity, and as speciation in rice. Environ Sci Technol 47(13):7147–7154

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There is no funding for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Chhabra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This chapter does not contain any studies with human or animal participants performed by any of the authors.

Consent for publication

Not applicable.

Additional information

Communicated by J. Huang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhabra, R., Goyal, P., Singh, T. et al. Understanding straighthead: a complex physiological disorder of rice (Oryza sativa L.). Acta Physiol Plant 43, 135 (2021). https://doi.org/10.1007/s11738-021-03309-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03309-y

Keywords

Navigation