Skip to main content

Allelopathic effects of Koelreuteria integrifoliola leaf aqueous extracts on Lolium perenne related to mesophyll ultrastructural alterations and endogenous hormone contents

Abstract

Koelreuteria integrifoliola, an important ornamental plant, has interference effect on the turf grass. However, the mechanisms of its allelopathy to plants has not been fully elucidated. Here, the allelopathic effects of leaf aqueous extract of K. integrifoliola on the growth, endogenous hormone contents and ultrastructure of Lolium perenne Lam seedlings were investigated. Leaf aqueous extract of K. integrifoliola at different concentrations (25.00, 50.00 and 100.00 mg mL−1) significantly reduced the growth (in terms of dry weight), chlorophyll b, total chlorophyll and carotenoids contents of L. perenne. The results also showed the decline in indole acetic acid (IAA) and gibberellic acid (GA3) contents, and the increase in abscisic acid (ABA) after extract treatment (50.00 and 100.00 mg mL−1). In addition, the (IAA + GA3)/ABA ratios in root and leaf decreased with the increase of extract concentrations. Upon exposure to extracts (50.00 and 100.00 mg mL−1), L. perenne mesophyll cell showed structural abnormalities, mostly including chloroplast distribution, destruction of chloroplast membrane and thylakoid membrane, increment of plastoglobuli number, dissolution of mitochondrial membrane and disappearance of the internal ridge. Furthermore, the chloroplast number and chloroplast volume in L. perenne mesophyll cell showed a concentration-dependent decline exposed to extracts. Thus, the changes of endogenous hormones contents and their ratios, the ultrastructure changes of mesophyll cells caused by the K. integrifoliola leaf aqueous extracts are partly responsible for allelopathic inhibition of receptor plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alkhatib R, Alkhatib B, Al-Quraan N, Al-Eitan L, Abdo N, Muhaidat R (2016) Impact of exogenous caffeine on morphological, biochemical, and ultrastructural characteristics of Nicotiana tabacum. Biol Plant 60:706–714. https://doi.org/10.1007/s10535-016-0600-z

    CAS  Article  Google Scholar 

  2. Batish DR, Singh HP, Setia N, Kaur S, Kohli RK (2006) 2-Benzox-azolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol Biochem 44:819–827. https://doi.org/10.1016/j.plaphy.2006.10.014

    CAS  Article  PubMed  Google Scholar 

  3. Bogatek R, Gniazdowska A, Zakrzewska W, Oracz K, Gawronski SW (2006) Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biol Plant 50:156–158. https://doi.org/10.1007/s10535-005-0094-6

    Article  Google Scholar 

  4. Braine JW, Curcio GR, Wachowicz CM, Hansel FA (2012) Allelopathic effects of Araucaria angustifolia needle extracts in the growth of Lactuca sativa seeds. J for Res 17:440–445. https://doi.org/10.1007/s10310-011-0314-1

    CAS  Article  Google Scholar 

  5. Cao XW, Cui HM, Yao Y, Xiong AS, Hou XL, Li Y (2017) Effects of endogenous hormones on variation of shoot branching in a variety of non-heading Chinese cabbage and related gene expression. J Plant Biol 60:343–351. https://doi.org/10.1007/s12374-016-0124-2

    CAS  Article  Google Scholar 

  6. Cao L, Liu JH, Lin Q, Ronse De Craene LP (2018) The floral organogenesis of Koelreuteria bipinnata and its variety K. Bipinnata var. Integrifolia (Sapindaceae): Evidence of floral constraints on the evolution of monosymmetry. Plant Syst Evol 304:923–935. https://doi.org/10.1007/s00606-018-1519-y

    Article  Google Scholar 

  7. Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020. https://doi.org/10.3389/fpls.2016.01697

    Article  PubMed  PubMed Central  Google Scholar 

  8. Decraene LPR, Smets E, Clinckemaillie D (2000) Floral ontogeny and anatomy in Koelreuteria with special emphasis on Monosymmetry and septal cavities. Plant Syst Evol 223:91–107. https://doi.org/10.1007/BF00985329

    Article  Google Scholar 

  9. Ding L, Qi L, Jing H, Li J, Wang W, Wang T (2008) Phytotoxic effects of Leukamenin E (an en-tkaurene diterpenoid) on root growth and root hair development in Lactuca sativa L. seedlings. J Chem Ecol 34:1492–1500. https://doi.org/10.1007/s10886-008-9556-6

    CAS  Article  PubMed  Google Scholar 

  10. Graña E, Sotelo T, Diaz-Tielas C, Araniti F, Krasuska U, Bogatek R, Reigosa MJ, Sanchez-Moreiras AM (2013) Citral induces auxin and ethylene-mediated malformations and arrests cell division in Arabidopsis thaliana roots. J Chem Ecol 39:271–282. https://doi.org/10.1007/s10886-013-0250-y

    CAS  Article  PubMed  Google Scholar 

  11. Gulzar A, Siddiqui MB, Bi S (2016) Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L. Protoplasma 253:1211–1221. https://doi.org/10.1007/s00709-015-0862-x

    CAS  Article  PubMed  Google Scholar 

  12. He Z (1993) A laboratory guide to chemical control technology on field crop. Beijing Agricultural University Press, Beijing, pp 60–68. (In Chinese)

  13. Holappa LD, Blum U (1991) Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber, and bean. J Chem Ecol 17:865–886. https://doi.org/10.1007/bf01395596

    CAS  Article  PubMed  Google Scholar 

  14. Hong S, Lee YH, Choi YJ, Lee J, Shin HD (2019) First report of powdery mildew caused by Blumeria graminis on Italian ryegrass (Lolium multiflorum) in Korea. Plant Dis 103:761–762. https://doi.org/10.1094/PDIS-09-18-1535-PDN

    Article  Google Scholar 

  15. Hu Y, Na X, Li J, Yang L, You J, Liang X, Wang J, Peng L, Bi Y (2015) Narciclasine, a potential allelochemical, affects subcellular trafficking of auxin transporter proteins and actin cytoskeleton dynamics in Arabidopsis roots. Planta 242:1349–1360. https://doi.org/10.1007/s00425-015-2373-6

    CAS  Article  PubMed  Google Scholar 

  16. Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350. https://doi.org/10.1046/j.1365-3040.2000.00560.x

    CAS  Article  Google Scholar 

  17. Kurepin L, Haslam T, Lopez-Villalobos A, Oinam G, Yeung E (2011a) Adventitious root formation in ornamental plants: II. The role of plant growth regulators. Propag Ornam Plants 11:161–171

    Google Scholar 

  18. Kurepin LV, Walton LJ, Yeung EC, Reid DM (2011b) The interaction of light irradiance with auxin in regulating growth of Helianthus annuus shoots. Plant Growth Regul 65:255–262. https://doi.org/10.1007/s10725-011-9596-8

    CAS  Article  Google Scholar 

  19. Kurepin LV, Park JM, Lazarovits G, Bernards MA (2015) Burkholderia phytofirmans-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels. Plant Growth Regul 75:199–207. https://doi.org/10.1007/s10725-014-9944-6

    CAS  Article  Google Scholar 

  20. Li XJ, Meng FJ (1996) Study on the photoperiodic-induced flowering in soybean: changes of plant hormones and assimilates of the first leaves. J China Agric Univ 1:35–39. (In Chinese)

  21. Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952. https://doi.org/10.3390/molecules15128933

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Li LL, Shao TY, Yang H, Chen MX, Gao XM, Long XH, Shao HB, Liu ZP, Rengel Z (2017) The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil. Sci Total Environ 578:40–46. https://doi.org/10.1016/j.scitotenv.2016.06.075

    CAS  Article  PubMed  Google Scholar 

  23. Li HS (2006) Principles and techniques of plant physiology and biochemistry experiment. Higher Education Press, Beijing, pp 118–119. (In Chinese)

  24. Liu Q, Lu D, Jin H, Yan Z, Li X, Yang X, Guo H, Qin B (2014) Allelochemicals in the rhizosphere soil of Euphorbia himalayensis. J Agric Food Chem 62:8555–8561. https://doi.org/10.1021/jf502020v

    CAS  Article  PubMed  Google Scholar 

  25. Luo Z, Tian D, Ning C, Yan W, Xiang W, Peng C (2015) Roles of Koelreuteria bipinnata as a suitable accumulator tree species in remediating Mn, Zn, Pb, and Cd pollution on Mn mining wastelands in southern China. Environ Earth Sci 74:4549–4559. https://doi.org/10.1007/s12665-015-4510-8

    CAS  Article  Google Scholar 

  26. Milledge JJ, Nielsen BV, Harvey PJ (2019) The inhibition of anaerobic digestion by model phenolic compounds representative of those from Sargassum muticum. J Appl Phycol 31:779–786. https://doi.org/10.1007/s10811-018-1512-4

    CAS  Article  Google Scholar 

  27. Mitić N, Stanišić M, Savić J, Ćosić T, Stanisavljević N, Miljuš-Đukić J, Marin M, Radović S, Ninković S (2018) Physiological and cell ultrastructure disturbances in wheat seedlings generated by Chenopodium murale hairy root exudate. Protoplasma 255:1683–1692. https://doi.org/10.1007/s00709-018-1250-0

    CAS  Article  PubMed  Google Scholar 

  28. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    CAS  Article  PubMed  Google Scholar 

  29. Mizutani J (1999) Selected allelochemicals. Crit Rev Plant Sci 18:653–671. https://doi.org/10.1080/07352689991309432

    CAS  Article  Google Scholar 

  30. Mutlu S, Atici Ö (2009) Allelopathic effect of Nepeta meyeri Benth. Extracts on seed germination and seedling growth of some crop plants. Acta Physiol Plant 31:89–93. https://doi.org/10.1007/s11738-008-0204-0

    Article  Google Scholar 

  31. Niu S, Li Z, Yuan H, Fang P, Chen X, Li W (2013) Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. J Exp Bot 64:3411–3424. https://doi.org/10.1093/jxb/ert186

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Ozga JA, Yu J, Reinecke DM (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3β-hydroxylase gene expression in pea fruit and seeds. Plant Physiol 131:1137–1146. https://doi.org/10.1104/pp.102.015974

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Pathan SM, Aylmore LAG, Colmer TD (2003) Soil properties and turf growth on a sandy soil amended with fly ash. Plant Soil 256:103–114. https://doi.org/10.1023/A:1026203113588

    CAS  Article  Google Scholar 

  34. Rehman S, Shahzad B, Bajwa AA, Hussain S, Rehman A, Cheema SA, Abbas T, Ali A, Shah L, Adkins S, Li P (2019) Utilizing the allelopathic potential of Brassica species for sustainable crop production: a review. J Plant Growth Regul 38:343–356. https://doi.org/10.1007/s00344-018-9798-7

    CAS  Article  Google Scholar 

  35. Rice EL (1984) Allelopathy. Academic Press, New York, pp 292–293

    Book  Google Scholar 

  36. Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379. https://doi.org/10.1016/j.pbi.2007.06.003

    CAS  Article  PubMed  Google Scholar 

  37. Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, Pastor V, Flors V (2013) Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep 32:1085–1098. https://doi.org/10.1007/s00299-013-1441-2

    CAS  Article  Google Scholar 

  38. Soltys D, Rudzinska-Langwald A, Gniazdowska A, Wisniewska A, Bogatek R (2012) Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta 236:1629–1638. https://doi.org/10.1007/s00425-012-1722-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Tan Z, Wang C, Wang G (2012) First report of bark cracking of Koelreuteria bipinnata var. integrifoliola caused by Lasiodiplodia theobromae in China. Plant Dis 96:1579–1579. https://doi.org/10.1094/PDIS-04-12-0337-PDN

    CAS  Article  PubMed  Google Scholar 

  40. Valera-Burgos J, Díaz-Barradas MC, Zunzunegui M (2012) Effects of Pinus pinea litter on seed germination and seedling performance of three Mediterranean shrub species. Plant Growth Regul 66:285–292. https://doi.org/10.1007/s10725-011-9652-4

    CAS  Article  Google Scholar 

  41. Vyvyan JR (2002) Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58:1631–1646. https://doi.org/10.1016/S0040-4020(02)00052-2

    CAS  Article  Google Scholar 

  42. Wang J, Dai C, Zhang X, Lu Y (2018) Elucidating the molecular mechanism of the inhibitory effect of epigallocatechin-3-gallate on Microcystis aeruginosa. J Appl Phycol 30:1747–1758. https://doi.org/10.1007/s10811-017-1370-5

    CAS  Article  Google Scholar 

  43. Wang J, Zhuang L, Zhang J, Yu J, Yang Z, Huang B (2019) Identification and characterization of novel homeodomain leucine zipper (HD-zip) transcription factors associated with heat tolerance in perennial ryegrass. Environ Exp Bot 160:1–11. https://doi.org/10.1016/j.envexpbot.2018.12.023

    CAS  Article  Google Scholar 

  44. Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479. https://doi.org/10.1016/j.pbi.2004.05.007

    CAS  Article  PubMed  Google Scholar 

  45. Weston LA, Mathesius U (2013) Flavonoids: Their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297. https://doi.org/10.1007/s10886-013-0248-5

    CAS  Article  PubMed  Google Scholar 

  46. Xie BB, Wang XD, Ye JF (2011) Research status and prospect on Koelreuteria integrifoliola Merr. Northern Horticult 23:181–183. (In Chinese)

  47. Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem Syst Ecol 31:129–139. https://doi.org/10.1016/S0305-1978(02)00150-3

    CAS  Article  Google Scholar 

  48. Zhang X, Chang HN, Li HY (2017) Allelopathy of Koelreuteria bipinnata franch Var. Integrifoliola T. Chen leaf aqueous extracts on the seedling growth of Lolium perenne. Northern Horticult 71–75 (In Chinese)

  49. Zhang X, Cui QX, Zhao Y, Li HY (2018) Allelopathic potential of koelreuteria bipinnata var. Integrifoliola on germination of three turf grasses. Russ J Plant Physiol 65:833–841. www.doi.org/https://doi.org/10.1134/S1021443718060146

Download references

Acknowledgements

This study was funded by Science and Technology Plan Project of Colleges and Universities of Shandong Province (J13LF03). We also thank Yankui Guo (Shandong Agricultural University) for help in the transmission electron microscopy analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haiyun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. Gniazdowska-Piekarska.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Z. & Li, H. Allelopathic effects of Koelreuteria integrifoliola leaf aqueous extracts on Lolium perenne related to mesophyll ultrastructural alterations and endogenous hormone contents. Acta Physiol Plant 43, 132 (2021). https://doi.org/10.1007/s11738-021-03303-4

Download citation

Keywords

  • Koelreuteria integrifoliola
  • Lolium perenne
  • Allelopathy
  • Ultrastructural
  • Endogenous hormone