Skip to main content

Abiotic stress responses in maize: a review

Abstract

Maize (Zea mays) is the most widely grown crop throughout the world. Its response against various environmental stress factors is quite complex and dynamic, and can be either elastic (reversible) or plastic (irreversible) in nature. Climatic change on the other hand is expected to increase the intensity and frequency of both abiotic and biotic stress factors. In this context, we review the literature on climate change consortium with abiotic stress highlighting the scenario of this nutritionally valuable crop plant and its elicited responses at morphological, physiological, biochemical and phytochemical levels. Besides, ‘omic’ architecture of the plant toward multiple stress factors is also discussed as a report of its first kind. Despite significant knowledge gaps that still exist, it is evident that climate change is going to influence the abiotic stress tolerance mechanisms in plants in general and maize in particular. While broad generalizations are not yet possible, because the specific plant responses towards one type of stress at one time or multiple stresses differ considerably. However, a better understanding of underlying response mechanisms regulated in the face of climate change-associated abiotic stress is needed to safeguard the optimal resilience and productivity of the maize.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

The review does not contain any data which is to be submitted.

References

  1. Abdallah NA, Moses V, Prakash C (2014) The impact of possible climate changes on developing countries: the needs for plants tolerant to abiotic stresses. GM Crops Food 5:77–80

    PubMed  PubMed Central  Article  Google Scholar 

  2. Abdelgawad Z, Khalafaallah AA, Abdallah M (2014) Impact of methyl jasmonate on antioxidant activity and some biochemical aspects of maize plant grown under water stress condition. Agric Sci 5:1077

    Google Scholar 

  3. Ahmad I, Ahmad TKA, Basra SM, Hasnain Z, Ali A (2012) Effect of seed priming with ascorbic acid, salicylic acid and hydrogen peroxide on emergence, vigor and antioxidant activities of maize. Afr J Biotechnol 11:1127–1137

    CAS  Google Scholar 

  4. Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    CAS  PubMed  Article  Google Scholar 

  5. Ali Q, Ashraf M (2007) Athar H-U-R exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak J Bot 39:1133–1144

    Google Scholar 

  6. Ali ML, Luetchens J, Singh A, Shaver TM, Kruger GR, Lorenz AJ (2016) Greenhouse screening of maize genotypes for deep root mass and related root traits and their association with grain yield under water-deficit conditions in the field. Euphytica 207:79–94

    CAS  Article  Google Scholar 

  7. Ananiev E, Phillips R, Rines H (1998) Complex structure of knob DNA on maize chromosome 9: retrotransposon invasion into heterochromatin. Genetics 149:2025–2037

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Andrade FH, Echarte L, Rizzalli R, Della Maggiora A, Casanovas M (2002) Kernel number prediction in maize under nitrogen or water stress. Crop Sci 42:1173–1179

    Article  Google Scholar 

  9. Anjum S, Wang L, Farooq M, Hussain M, Xue L, Zou C (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    CAS  Article  Google Scholar 

  10. Aslam M, Zamir I, Shahid M, Afzal I, Yaseen M (2013) Morphological and physiological response of maize hybrids to potassium application under drought stress. J Agric Res 51

  11. Baker NR, Farage PK, Stirling C, Long S (1994) Photoinhibition of crop photosynthesis in the field at low temperatures photoinhibition of photosynthesis from molecular mechanisms to the field. Bios Scientific Publisher, Oxford, pp 349–363

    Google Scholar 

  12. Bänziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. Mexico, DF: Cimmyt

  13. Barton B, Clark SE (2014) Water & climate risks facing US corn production: how companies & investors can cultivate sustainability. A Ceres Report Boston, MA

  14. Bassu S et al (2014) How do various maize crop models vary in their responses to climate change factors? Glob Change Biol 20:2301–2320

    Article  Google Scholar 

  15. Baszczynski CL, Walden DB, Atkinson BG (1983) Regulation of gene expression in corn (Zea mays L.) by heat shock. II. In vitro analysis of RNAs from heat-shocked seedlings. Can J Biochem Cell Biol 61:395–403

    CAS  PubMed  Article  Google Scholar 

  16. Bechoux N, Bernier G, Lejeune P (2000) Environmental effects on the early stages of tassel morphogenesis in maize (Zea mays L.) Plant. Cell Environ 23:91–98

    Article  Google Scholar 

  17. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    PubMed  PubMed Central  Article  Google Scholar 

  18. Benešová M et al (2012) The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE 7:e38017

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Berberich T, Sano H, Kusano T (1999) Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize. Mol Gen Genet MGG 262:534–542

    CAS  PubMed  Article  Google Scholar 

  20. Bernstein BE, Tong JK, Schreiber SL (2000) Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci 97:13708–13713

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Bhati-Kushwaha H, Malik C (2013) Applications of nanotechnology in the field of medicine. LS 2:14–25

    Google Scholar 

  22. Blande JD, Holopainen JK, Niinemets Ü (2014) Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ 37:1892–1904

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Bonham-Smith PC, Kapoor M, Bewley JD (1987) Establishment of thermotolerance in maize by exposure to stresses other than a heat shock does not require heat shock protein synthesis. Plant Physiol 85:575–580

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Brevik EC (2013) The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 3:398–417

    Article  Google Scholar 

  25. Burke JJ (2007) Evaluation of source leaf responses to water-deficit stresses in cotton using a novel stress bioassay. Plant Physiol 143:108–121

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Burke MB, Miguel E, Satyanath S, Dykema JA, Lobell DB (2009) Warming increases the risk of civil war in Africa. Proc Natl Acad Sci 106:20670–20674

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Burton AL, Johnson J, Foerster J, Hanlon MT, Kaeppler SM, Lynch JP, Brown KM (2015) QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.). Theor Appl Genet 128:93–106

    PubMed  Article  Google Scholar 

  28. Cairns JE, Hellin J, Sonder K, Araus JL, MacRobert JF, Thierfelder C, Prasanna B (2013) Adapting maize production to climate change in sub-Saharan Africa. Food Security 5:345–360

    Article  Google Scholar 

  29. Camacho R, Caraballo D (1994) Evaluation of morphological characteristics in Venezuelan maize (Zea mays L.) genotypes under drought stress. Scientia Agricola 51:453–458

    Article  Google Scholar 

  30. Cambier V, Hance T, de Hoffmann E (2000) Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53:223–229

    CAS  PubMed  Article  Google Scholar 

  31. Cantao FRDO, Durães FOM, de Oliveira AC, Soares ÂM, Magalhães PC (2008) Morphological attributes of root system ofmaize genotypes contrasting in drought tolerance due to phosphorus stress. Revista Brasileira de Milho e Sorgo 7(2):113–127

    Article  Google Scholar 

  32. Cantao FRDO, DURÃES FOM, DE OLIVEIRA AC, SOARES ÂM, MAGALHÃES PC (2010) Morphological attributes of root system of maize genotypes contrasting in drought tolerance due to phosphorus stress Revista Brasileira de Milho e Sorgo 7

  33. Carmo-Silva AE, Keys AJ, Beale MH, Ward JL, Baker JM, Hawkins ND, Arrabaça MC, Parry MA (2009) Drought stress increases the production of 5-hydroxynorvaline in two C4 grasses. Phytochem 70(5):664–71

  34. Casaretto JA, El-kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi Y-M, Rothstein SJ (2016) Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genom 17:312

    Article  CAS  Google Scholar 

  35. Ceccarelli S et al (2010) Plant breeding and climate changes. J Agric Sci 148:627–637

    Article  Google Scholar 

  36. Challinor AJ, Simelton ES, Fraser ED, Hemming D, Collins M (2010) Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environ Res Lett 5:034012

    Article  Google Scholar 

  37. Challinor AJ, Watson J, Lobell D, Howden S, Smith D, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change 4:287

    Article  Google Scholar 

  38. Charlton AJ, Donarski JA, Harrison M, Jones SA, Godward J, Oehlschlager S, Arques JL, Ambrose M, Chinoy C, Mullineaux PM, Domoney C (2008) Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4(4):312–327

  39. Chavas DR, Izaurralde RC, Thomson AM, Gao X (2009) Long-term climate change impacts on agricultural productivity in eastern China. Agric for Meteorol 149:1118–1128

    Article  Google Scholar 

  40. Chen Y, Cao Y, Wang L, Li L, Yang J, Zou MJBP (2018) Identification of MYB transcription factor genes and their expression during abiotic stresses in maize. Biol Plant 62:222–230

  41. Davey MP, Bryant DN, Cummins I, Ashenden TW, Gates P, Baxter R, Edwards R (2004) Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima. Phytochem 65(15):2197–204

    CAS  Article  Google Scholar 

  42. Diffenbaugh NS, Krupke CH, White MA, Alexander CE (2008) Global warming presents new challenges for maize pest management. Environ Res Lett 3:044007

    Article  Google Scholar 

  43. Ding H, Zhang A, Wang J, Lu R, Zhang H, Zhang J, Jiang M (2009) Identity of an ABA-activated 46 kDa mitogen-activated protein kinase from Zea mays leaves: partial purification, identification and characterization. Planta 230:239–251

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Dolatabadian A, Modarres Sanavy S, Sharifi M (2009) Alleviation of water deficit stress effects by foliar application of ascorbic acid on Zea Mays L. J Agron Crop Sci 195:347–355

    CAS  Article  Google Scholar 

  45. Du H et al (2013) Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants. DNA Res 20:437–448

  46. Elad Y, Pertot I (2014) Climate change impacts on plant pathogens and plant diseases. J Crop Improv 28:99–139

    CAS  Article  Google Scholar 

  47. Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TC (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:6273

    CAS  PubMed  Article  Google Scholar 

  48. Faostat FJQ (2017) Available online: http://www.fao.org/faostat/en/#data. Accessed Dec 2019

  49. Farooq M, Aziz T, Wahid A, Lee D-J, Siddique KH (2009) Chilling tolerance in maize: agronomic and physiological approaches Crop and Pasture. Science 60:501–516

    Google Scholar 

  50. Fedoroff NV et al (2010) Radically rethinking agriculture for the 21st century. Science 327:833–834

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Fischer C, Höll W (1991) Food reserves of Scots pine (Pinus sylvestris L.). Trees 5:187–195

    Article  Google Scholar 

  52. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Fracheboud Y, Leipner J (2003) The application of chlorophyll fluorescence to study light, temperature, and drought stress. In: Practical applications of chlorophyll fluorescence in plant biology. Springer, Boston, MA pp 125–150

  54. Frendo P, Didierjean L, Passelegue E, Burkard G (1992) Abiotic stresses induce a thaumatin-like protein in maize; cDNA isolation and sequence analysis. Plant Sci 85:61–69

    CAS  Article  Google Scholar 

  55. Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler JP, Loreto F (2008) Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 55(4):687–97

    CAS  PubMed  Article  Google Scholar 

  56. Fu J et al (2012) Isolation and characterization of maize PMP3 genes involved in salt stress tolerance. PLoS ONE 7:e31101

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Gleadow RM, Evans JR, McCaffery S, Cavagnaro TR (2009) Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO2. Plant Biol 11:76–82

    CAS  PubMed  Article  Google Scholar 

  58. Gohari A, Eslamian S, Abedi-Koupaei J, Bavani AM, Wang D, Madani K (2013) Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Sci Total Environ 442:405–419

    CAS  PubMed  Article  Google Scholar 

  59. Gong F, Yang L, Tai F, Hu X, Wang W (2014) “Omics” of maize stress response for sustainable food production: opportunities and challenges. OMICS 18:714–732

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. González EM, Gálvez L, Arrese-Igor C (2001) Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. J Exp Bot 52:285–293

    PubMed  Article  Google Scholar 

  61. Gouinguené SP, Turlings TC (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296–1307

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. Gu L, Liu Y, Zong X, Liu L, Li D-P, Li D-Q (2010) Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in arabidopsis increases tolerance to salt stress. Mol Biol Rep 37:4067–4073

    CAS  PubMed  Article  Google Scholar 

  63. Habben JE et al (2014) Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J 12:685–693

    CAS  PubMed  Article  Google Scholar 

  64. Hadiarto T (2011) Tran L-SP progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297–310

    CAS  PubMed  Article  Google Scholar 

  65. Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl complex I is protected by anti-oxidants and small heat shock proteins, whereas complex ii is protected by proline and betaine. Plant Physiol 126:1266–1274

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Hansen J, Hellin J, Rosenstock T, Fisher E et al (2019) Climate risk management and rural poverty reduction. Agric Sys 172:28–46

  67. Hashiguchi A, Komatsu S (2016) Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes 4:42

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  68. Hatfield J (2016) Increased temperatures have dramatic effects on growth and grain yield of three maize hybrids. The American Society of Agronomy Crop Science Society of America, and Soil Science Society of America Inc, Madison Google Scholar

  69. Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Article  Google Scholar 

  70. Hatfield JL et al (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  71. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    CAS  PubMed  Article  Google Scholar 

  72. Hong-Bo S et al (2006) Investigation on the relationship of proline with wheat anti-drought under soil water deficits. Colloids Surf B 53:113–119

    Article  CAS  Google Scholar 

  73. Hu X, Wang W (2016) Proteomics driven research of abiotic stress responses in crop plants. In: Plant omics: trends and applications. Springer, Cham pp 351–362

  74. Hu X, Wu X, Li C, Lu M, Liu T, Wang Y, Wang W, Schönbach C (2012) Abscisic Acid Refines the Synthesis of Chloroplast Proteins in Maize (Zea mays) in Response to Drought and Light. PLoS ONE 7(11):e49500. https://doi.org/10.1371/journal.pone.0049500

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Hu X, Li Y, Li C, Yang H, Wang W, Lu M (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J Plant Growth Regul 29:455–464

    CAS  Article  Google Scholar 

  76. Hu Y et al (2011) Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS ONE 6:e22132

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Hu Y, Guo S, Li X, Ren X (2013) Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti4+-IMAC enrichment and ESI-Q-TOF MS. Electrophoresis 34:485–492

    PubMed  Article  CAS  Google Scholar 

  78. Huai J et al (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27:1861–1868

    CAS  PubMed  Article  Google Scholar 

  79. Iizumi T, Ramankutty N (2015) How do weather and climate influence cropping area and intensity? Glob Food Sec 4:46–50

    Article  Google Scholar 

  80. Iqbal MM, Arif M (2010) Climate-change aspersions on food security of Pakistan. J Sci Develop 15

  81. Ito H, Yoshida T, Tsukahara S, Kawabe A (2013) Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae. Gene 518:256–261

    CAS  PubMed  Article  Google Scholar 

  82. Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philos Trans R Soc Lond B 365:2835–2851

    Article  Google Scholar 

  83. Jin Y et al (2007) Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics 90:265–275

    CAS  PubMed  Article  Google Scholar 

  84. Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob Environ Change 13:51–59

    Article  Google Scholar 

  85. Jovanovic L, Veljovic S, Janjic V (1991) Water regime and photosynthesis parameters in two maize lines differing in drought susceptibility. Biol Vest 39:103–108

    Google Scholar 

  86. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. In: Plant gene silencing. Springer, Muthapa pp 59–68

  87. Kamara A, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141:43–50

    Article  Google Scholar 

  88. Kholova J, Sairam RK, Meena RC (2010) Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiol Plant 32:477–486

    CAS  Article  Google Scholar 

  89. Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lu S, Joubès J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant physiol 151(4):1918–1929

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Kim S-H, Gitz DC, Sicher RC, Baker JT, Timlin DJ, Reddy VR (2007) Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environ Exp Bot 61:224–236

    Article  CAS  Google Scholar 

  91. Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N, and temperature 31:36–43

  92. Kimotho RN, Baillo EH, Zhang Z (2019) Transcription factors involved in abiotic stress responses in Maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era 7:e7211

  93. Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    CAS  PubMed  Article  Google Scholar 

  94. Köllner TG, Gershenzon J, Degenhardt J (2009) Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 70:1139–1145

    PubMed  Article  CAS  Google Scholar 

  95. Kong Y, Elling AA, Chen B, Deng X (2010) Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress American. J Plant Sci 1:69

    CAS  Article  Google Scholar 

  96. Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS 15:859–872

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Kumar S, Gupta D, Nayyar H (2012) Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiol Plant 34:75–86

    CAS  Article  Google Scholar 

  98. Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40

    CAS  PubMed  Article  Google Scholar 

  99. Lee E, Staebler M, Tollenaar M (2002) Genetic variation in physiological discriminators for cold tolerance—early autotrophic phase of maize development. Crop Sci 42:1919–1929

    Article  Google Scholar 

  100. Leipner J, Stamp P, Fracheboud Y (2000) Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Planta 210:964–969

    CAS  PubMed  Article  Google Scholar 

  101. Liu M (2012) Response of photosynthesis and chlorophyll fluorescence to drought stress in two maize cultivars. Afr J Agr Res 7(34):0.5897/AJAR12.082

  102. Li H, Gao Y, Xu H, Dai Y, Deng D, Chen J (2013) ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul 70:207–216

  103. Li P et al (2017) Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. Front Plant Sci 8:290

    PubMed  PubMed Central  Google Scholar 

  104. Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Liu S et al (2013a) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet 9:e1003790

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Liu Y et al (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959

    CAS  PubMed  Article  Google Scholar 

  107. Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002

    Article  Google Scholar 

  108. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    CAS  PubMed  Article  Google Scholar 

  109. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620

  110. López-Pérez L, del Carmen Martínez-Ballesta M, Maurel C, Carvajal M (2009) Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochem 70(4):492–500

    Article  CAS  Google Scholar 

  111. Lu M, Ying S, Zhang DF, Shi YS, Song YC, Wang TY, Li Y (2012) A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep. 31:1701–1711

    CAS  PubMed  Article  Google Scholar 

  112. Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:1004915

    Article  CAS  Google Scholar 

  113. Menezes-Benavente L, Kernodle SP, Margis-Pinheiro M, Scandalios JG (2004) Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Rep 9:29–36

    CAS  PubMed  Article  Google Scholar 

  114. Mercer KL, Perales HR, Wainwright JD (2012) Climate change and the transgenic adaptation strategy: Smallholder livelihoods, climate justice, and maize landraces in Mexico. Glob Environ Change 22:495–504

    Article  Google Scholar 

  115. Miedema P (1982) The effects of low temperature on Zea mays. In: Advances in agronomy, vol 35. Elsevier, pp 93–128

  116. Mishkind M, Vermeer JE, Darwish E, Munnik T (2009) Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J 60(1):10–21

  117. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Et Biophysica Acta (BBA)-Gene Regulat Mech 1819:86–96

    CAS  Article  Google Scholar 

  118. Moharramnejad S, Sofalian O, Valizadeh M, Asgari A, Shiri M (2015) Proline, glycine betaine, total phenolics and pigment contents in response to osmotic stress in maize seedlings. J Biosci Biotechnol 4(3):313–319

  119. Monneveux P, Sanchez C, Beck D, Edmeades G (2006) Drought tolerance improvement in tropical maize source populations. Crop Sci 46:180–191

    Article  Google Scholar 

  120. Moriondo M, Giannakopoulos C, Bindi M (2011) Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Change 104:679–701

    Article  Google Scholar 

  121. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254

    CAS  PubMed  Article  Google Scholar 

  122. Mulakupadom SS, Otero S, Lanigan G, Osborne B (2013) Photosynthetic performance of maize subjected to low temperatures. In: Photosynthesis research for food, fuel and the future. Springer, Berlin, Heidelberg, pp 716–721

  123. Müller C, Cramer W, Hare WL, Lotze-Campen H (2011) Climate change risks for African agriculture. Proc Natl Acad Sci 108:4313–4315

    PubMed  PubMed Central  Article  Google Scholar 

  124. Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71

    CAS  Article  Google Scholar 

  125. Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144(2):1104–14

  126. Nguyen HT, Leipner J, Stamp P, Guerra-Peraza O (2009) Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem 47:116–122

    PubMed  Article  CAS  Google Scholar 

  127. Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecol Manag 260:1623–1639

    Article  Google Scholar 

  128. Oh MM, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J plant physiol 166(2):180–91

    CAS  PubMed  Article  Google Scholar 

  129. Oktem H, Eyidogan F, Selçuk F, Oz M, Teixeira da Silva J, Yucel M (2008) Revealing response of plants to biotic and abiotic stresses with microarray technology. Genes Genom Genomic 2:14–48

    Google Scholar 

  130. Parida AK, Dagaonkar VS, Phalak MS, Umalkar GV, Aurangabadkar LP (2007) Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotech Rep 1(1):37–48

    Article  Google Scholar 

  131. Patakas A, Noitsakis B (2001) Leaf age effects on solute accumulation in water-stressed grapevines. J Plant Physiol 158:63–69

    CAS  Article  Google Scholar 

  132. Paterson R, Lima N (2011) Further mycotoxin effects from climate change. Food Res Int 44:2555–2566

    CAS  Article  Google Scholar 

  133. Paterson RRM, Lima N (2010) How will climate change affect mycotoxins in food? Food Res Int 43:1902–1914

    CAS  Article  Google Scholar 

  134. Porter J, Parry M, Carter T (1991) The potential effects of climatic change on agricultural insect pests. Agric for Meteorol 57:221–240

    Article  Google Scholar 

  135. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    CAS  PubMed  Article  Google Scholar 

  136. Prior SA, Runion GB, Marble SC, Rogers HH, Gilliam CH, Torbert HA (2011) A review of elevated atmospheric CO2 effects on plant growth and water relations: implications for horticulture. HortScience 46:158–162

    CAS  Article  Google Scholar 

  137. Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant 128(4):710–21

    CAS  Article  Google Scholar 

  138. Ramazan S, Bhat HA, Zargar MA, Ahmad P, John R (2021a) Combined gas exchange characteristics chlorophyll fluorescence and response curves as selection traits for temperature tolerance in maize genotypes. Phot Res. https://doi.org/10.1007/s11120-021-00829-z

    Article  Google Scholar 

  139. Ramazan S, Qazi HA, Dar ZA, John R (2021b) Low temperature elicits differential biochemical and antioxidant responses in maize (Zea mays) genotypes with different susceptibility to low temperature stress. Physiol Mol Biol of Plants 27(6):1395–1412. https://doi.org/10.1007/s12298-021-01020-3

    CAS  Article  Google Scholar 

  140. Ramirez-Villegas J, Jarvis A, Läderach P (2013) Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agric for Meteorol 170:67–78

    Article  Google Scholar 

  141. Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989

    CAS  PubMed  Article  Google Scholar 

  142. Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu JJP (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  143. Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150(3):1530–40

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. Ristic Z, Gifford DJ, Cass DD (1991) Heat shock proteins in two lines of Zea mays L. that differ in drought and heat resistance. Plant Physiol 97:1430–1434

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Rodriguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60(15):4249–4262

  146. Rowhani P, Lobell DB, Linderman M, Ramankutty N (2011) Climate variability and crop production in Tanzania. Agric for Meteorol 151:449–460

    Article  Google Scholar 

  147. Ruiz-Vera UM, Siebers MH, Drag DW, Ort DR, Bernacchi CJ (2015) Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2]. Glob Change Biol 21:4237–4249

    Article  Google Scholar 

  148. Sacks MM, Silk WK, Burman P (1997) Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol 114:519–527

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Samra J, Singh G, Ramakrishna YS (2003) Cold wave of 2002–03: impact on agriculture. Natural Resource Management Division, Indian Council of Agricultural Research, NewDelhi, India

  150. Sayed O (2003) Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41:321–330

    CAS  Article  Google Scholar 

  151. Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79:659–678

    CAS  PubMed  Article  Google Scholar 

  152. Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Article  Google Scholar 

  153. Setter TL et al (2010) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot 62:701–716

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  154. Shaw PE (2002) Peptidyl-prolyl isomerases: a new twist to transcription. EMBO Rep 3:521–526

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123

    PubMed  PubMed Central  Article  Google Scholar 

  156. Sheng L et al (2015) Identification and characterization of novel maize miRNAs involved in different genetic background. Int J Biol Sci 11:781

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. Sicker D, Frey M, Schulz M, Gierl A (2000) Role of natural benzoxazinones in the survival strategy of plants. In: International review of cytology, vol 198. Elsevier, Bourne, Daneilli, Jeon, pp 319–346

  158. Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    CAS  PubMed  Article  Google Scholar 

  159. Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. Smith P, Gregory PJ (2013) Climate change and sustainable food production. Proc Nutr Soc 72:21–28

    PubMed  Article  Google Scholar 

  161. Solomon S (2007) The physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change intergovernmental panel on climate change (IPCC). Clim Change 2007:996

    Google Scholar 

  162. Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Song Y, Liu L, Li G, An L, Tian L (2017) Trichostatin A and 5-aza-2′-deoxycytidine influence the expression of cold-induced genes in arabidopsis. Plant Signal Behav 12:e1389828

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  164. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    PubMed  Article  Google Scholar 

  165. Szabó I, Bergantino E, Giacometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6:629–634

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  166. Tebaldi C, Lobell DJ (2018) Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environ Res Lett 13:065001

  167. Ton J et al (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    CAS  PubMed  Article  Google Scholar 

  168. Travasso MI, Magrin GO, Rodriguez GR, Solman S, Nunez M (2009) Climate change impacts on regional maize yields and possible adaptation measures in Argentina. Int J Glob Warm 1:201–213

    Article  Google Scholar 

  169. Tubiello F, Rosenzweig C, Goldberg R, Jagtap S, Jones J (2002) Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part I: wheat, potato, maize, and citrus. Clim Res 20:259–270

    Article  Google Scholar 

  170. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    CAS  PubMed  Article  Google Scholar 

  171. Tyagi J, Sultan E, Mishra A, Kumari M, Pudake RN (2017) The impact of AMF symbiosis in alleviating drought tolerance in field crops. In: Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 211–234

  172. Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57(6):1065–78

    CAS  PubMed  Article  Google Scholar 

  173. Vaughan MM et al (2014) Effects of elevated [CO2] on maize defence against mycotoxigenic F usarium verticillioides. Plant Cell Environ 37:2691–2706

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  174. Vaughan MM et al (2015) Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ 38:2195–2207

    CAS  PubMed  Article  Google Scholar 

  175. Vaughan MM et al (2016) Interactive effects of elevated [CO2] and drought on the maize phytochemical defense response against mycotoxigenic Fusarium verticillioides. PLoS ONE 11:e0159270

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  176. Vaughan MM, Block A, Christensen SA, Allen LH, Schmelz EA (2018) The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochem Rev 17:37–49

    CAS  Article  Google Scholar 

  177. Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Biol 42:579–620

    CAS  Article  Google Scholar 

  178. Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. Proteom Invest Plant Physiol 137:949–960

    CAS  Article  Google Scholar 

  179. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    CAS  PubMed  Article  Google Scholar 

  180. Walker N, Schulze R (2008) Climate change impacts on agro-ecosystem sustainability across three climate regions in the maize belt of South Africa Agriculture. Ecosyst Environ 124:114–124

    Article  Google Scholar 

  181. Wang J, Ding H, Zhang A, Ma F, Cao J, Jiang M (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integrat Plant Biol 52:442–452

    CAS  Google Scholar 

  182. Wang Q et al (2017) Systematic analysis of the maize cyclophilin gene family reveals ZmCYP15 involved in abiotic stress response. Plant Cell Tissue Organ C (PCTOC) 128:543–561

    CAS  Article  Google Scholar 

  183. Waters AJ, Makarevitch I, Noshay J, Burghardt LT, Hirsch CN, Hirsch CD, Springer NM (2017) Natural variation for gene expression responses to abiotic stress in maize. Plant J 89:706–717

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  184. Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    CAS  Article  Google Scholar 

  185. Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    CAS  PubMed  Article  Google Scholar 

  186. Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, Von Caemmerer S (2009) The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J 58(2):299–317

  187. Wouters FC, Blanchette B, Gershenzon J, Vassão DG (2016) Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. Phytochem Rev 15:1127–1151

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  188. Xin Z, Li PH (1992) Abscisic acid-induced chilling tolerance in maize suspension-cultured cells. Plant Physiol 99:707–711

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  189. Xu H, Twine TE, Girvetz E (2016) Climate change and maize yield in Iowa. PLoS ONE 11:e0156083

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  190. Xuan N, Jin Y, Zhang H, Xie Y, Liu Y, Wang G (2011) A putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell Tissue Organ C (PCTOC) 107:101

    CAS  Article  Google Scholar 

  191. Yang J, Sicher RC, Kim MS, Reddy VR (2014) Carbon dioxide enrichment restrains the impact of drought on three maize hybrids differing in water stress tolerance in water stressed environments. Int J Plant Biol 5:5535

  192. Yilmaz A, Nishiyama MY, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149:171–180

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  193. Zaidi P, Yadav M, Maniselvan P, Khan R, Shadakshari T, Singh R, Pal D (2010) Morpho-physiological traits associated with cold stress tolerance in tropical maize (Zea mays L.). Maydica 55:201–208

  194. Zampieri M, Ceglar A, Dentener F, Dosio A, Naumann G, Van Den Berg M, Toreti AJ (2019) When will current climate extremes affecting maize production become the norm?. Earth's Future 7:113–122

  195. Zhan A, Schneider H, Lynch J (2015) Reduced lateral root branching density improves drought tolerance in maize. Plant Physiol, 168(4):1603–1615

  196. Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genom 10:449

    Article  CAS  Google Scholar 

  197. Zhang L et al (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  198. Zhang T et al (2012) Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS ONE 7:e43274

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  199. Zhang X, Wang W, Wang M, Zhang H-Y, Liu J-H (2016) The miR396b of Poncirus trifoliata functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene–polyamine homeostasis. Plant Cell Physiol 57:1865–1878

    CAS  PubMed  Article  Google Scholar 

  200. Zhao Y, Tong H, Cai R, Peng X, Li X, Gan D, Zhu S (2014) Identification and characterization of the RCI2 gene family in maize (Zea mays). J Genet 93:655–666

    CAS  PubMed  Article  Google Scholar 

  201. Zhang H, Ohyama K, Boudet J, Chen Z, Yang J, Zhang M, Muranaka T, Maurel C, Zhu JK, Gong Z (2008) Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis. Plant Cell 20(7):1879–1898

  202. Zheng J, Zhao J, Zhang J, Fu J, Gou M, Dong Z, Hou W, Huang Q, Wang G (2006) Comparative expression profiles of maize genes from a water stress-specific cDNA macroarray in response to high-salinity cold or abscisic acid. Plant Sci 170(6):1125–1132. https://doi.org/10.1016/j.plantsci.2006.01.019

    CAS  Article  Google Scholar 

  203. Zhou M-L et al (2012) Genome-wide identification of genes involved in raffinose metabolism in maize. Glycobiology 22:1775–1785

    CAS  PubMed  Article  Google Scholar 

  204. Zobayed SM, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John's wort. Plant Physiol Biochem 1;43(10-11):977–984

  205. Zong X-j, Li D-p, Gu L-k, Li D-q, Liu L-x, Hu X-l (2009) Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229:485

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support by CSIR, New Delhi (sanction number: 38 (1459)/18/EMR-II).

Funding

Authors are thankful to CSIR, New Delhi for funding research on crop plants.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Riffat.

Ethics declarations

Conflict of interests

Authors declare no conflict of interest.

Ethical approval

This is a review about maize and does not require ethicial approval or consent to participate.

Consent for publication

We agree for the publication of our review submitted to journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by P. Sowinski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salika, R., Riffat, J. Abiotic stress responses in maize: a review. Acta Physiol Plant 43, 130 (2021). https://doi.org/10.1007/s11738-021-03296-0

Download citation

Keywords

  • Maize
  • Abiotic stress
  • Climate change