Skip to main content

Humic acid improves morpho-physiological and biochemical traits of Phyla nodiflora

Abstract

Phyla nodiflora faces a retarded growth during the first growing season; therefore, this study was focused on the evaluation of the effect of humic acid on the growth and establishment of P. nodiflora. Herein, the first experiment was performed to assay the effect of four levels of humic acid, including 0, 250, 500, and 750 mg L−1, on the rooting properties of P. nodiflora in the sand medium. The second and third experiments were performed to evaluate the influence of humic acid on the morpho-physiological characteristics in the greenhouse and field environments with two humic acid foliar and fertigation applications, in two consecutive years. The physiological traits including chlorophyll, carotenoids, carbohydrates, protein, and anthocyanin content along with the morphological traits including underground organs (root length and volume, root wet and dry weight) and aerial organs (wet and dry weight) were significantly enhanced by humic acid in both application methods at the three experiments when compared to the control. Fertigation with humic acid of 500 mg L−1 in the field and greenhouse conditions was the most effective treatment on the traits measured. Fertigation with humic acid of 500 mg L−1 can be used to accelerate the growth rate of P. nodiflora during the first growing season.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Albayrak S, Camas N (2005) Effect of different levels and application times of humic acid on root and leaf yield and yield component of forage turpin. J Agron 42:130–133. https://doi.org/10.3923/ja.2005.130.133

    Article  Google Scholar 

  2. Al-Snai AE (2019) Pharmacological and therapeutic effects of Lippia nodiflora (Phyla nodiflora). IOSR J Pharm 9:15–25

    Google Scholar 

  3. Arnon DJ (1949) Copper enzymes in isolated chloroplasts. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Ayman M, Kamar M, Khalid M (2009) Amino and humic acids promote growth, yield and disease resistance of faba bean cultivated in clayey soil. Aust J Basic Appl Sci 3(2):731–739

    Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteinedye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    CAS  Article  PubMed  Google Scholar 

  6. Bull ID, Nott CJ, Bergen PF, Nott CJ, Poulton PR, Evershed RP (2000) Organic geochemical studies of soil from Rothamsted classical experiments: VI. The occurrence and source of organic acids in an experimental grassland soil. Soil Biol Biochem 32:1367–1376. https://doi.org/10.1016/S0038-0717(00)00054-7

    CAS  Article  Google Scholar 

  7. Chen Y, Clapp CE, Magen H (2004) Mechanisms of plant growth stimulation by humic substances: role of organo-iron complexes. Soil Sci Plant Nutr 50:1089–1095. https://doi.org/10.1080/00380768.2004.10408579

    CAS  Article  Google Scholar 

  8. David P, Nelson P, Sanders D (1994) A humic acid improves growth of tomato seedling in solution culture. J Plant Nutr 17:173–184. https://doi.org/10.1080/01904169409364717

    CAS  Article  Google Scholar 

  9. Dordas C, Sioulas S (2008) Sunflower yield, chlorophyll content, photosynthesis and water efficiency response to nitrogen fertilization under rainfed conditions. Crop Prod 27:78–85. https://doi.org/10.1016/j.indcrop.2007.07.020

    CAS  Article  Google Scholar 

  10. Ervin EH, Zhang X, Roberts JC (2008) Improving root development with foliar humic acid applications during Kentucky bluegrass sod establishment on sand. Acta Hortic 783:317–322. https://doi.org/10.17660/ActaHortic.2008.783.33

    CAS  Article  Google Scholar 

  11. Esringu A, Sezen I, Aytatli B, Ercisli S (2015) Effect of humic and fulvic acid application on growth parameters Impatiens walleriana L. Akademic Ziraat Dergisi 4(1):37–42

    Google Scholar 

  12. Fallahi E, Fallahi B, Seyedbagheri MM (2006) Influence of Humic substances and nitrogen on yield, fruit quality, and leaf mineral elements of ‘Early Spur Rome’ apple. J Plant Nutr 29:1819–1833. https://doi.org/10.1080/01904160600899337

    CAS  Article  Google Scholar 

  13. Fan HM, Wang XW, Sun X, Li YY, Sun XZ, Zheng CS (2014) Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Sci Hortic 177:118–123. https://doi.org/10.1016/j.scienta.2014.05.010

    CAS  Article  Google Scholar 

  14. Grasset L, Ambles A (1998) Structure of humin and humic acid from an acidic soil as revealed by phase transfer catalyzedhydrolysis. Org Geochem 29:881–891. https://doi.org/10.1016/S0146-6380(98)00193-4

    CAS  Article  Google Scholar 

  15. Kamari Shahmaleki S, Peyvast GH, Ghasemnejhad M (2012) Effect of humic acid on growth characteristics and yield of tomato varieties Isabella. Int J Hortic Sci 26(4):358–363

    Google Scholar 

  16. Kauser A, Azam F (1985) Effect of humic acid on wheat seeding growth. Environ Exp Bot 25:245–252. https://doi.org/10.1590/01000683rbcs20150294

    CAS  Article  Google Scholar 

  17. Kaya M, Atak M, Khawar KM, Ciftci CY, Ozcan S (2005) Effect of presowing seed treatment with Zinc and foliar spray of humic acids on yield of common bean (Phaseolus vulgaris L.). Int J Agric Biol 6:875–878

    Google Scholar 

  18. Kuo S (1996) Phosphorus. In: Sparks DL (ed) Methods of soil analysis. Part 3, 3rd ed. SSSA, Madison, WI, pp 869–920

  19. Liu C, Cooper RJ, Bowman DC (1998) Humic acids application affects photosynthesis, root development, and nutrient content of creeping bentgrass. HortScience 33:1023–1025

    CAS  Article  Google Scholar 

  20. Mackowiak CL, Grossl PR, Bugbee BG (2001) Beneficial effects of humic acid on micronutrient availability to wheat. Soil Sci Soc Am J 65(6):1744–1750. https://doi.org/10.2136/sssaj2001.1744

    CAS  Article  PubMed  Google Scholar 

  21. Mayhew L (2004) Humic acid substances in biological agriculture. Eco-Agriculture 34:182

    Google Scholar 

  22. Muscolo A, Sidari M, Francioso O, Tugnoli V, Nardi S (2007) The auxin- like activity of humic substances is related to membrane interactions in carrot cell cultures. J Chem Ecol 33:115–129. https://doi.org/10.1007/s10886-006-9206-9

    CAS  Article  PubMed  Google Scholar 

  23. Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34:1527–1536. https://doi.org/10.1016/S0038-0717(02)00174-8

    CAS  Article  Google Scholar 

  24. Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. Agronomy Monography, vol 9, 2nd edn. ASA and SSSA, Madison, WI, pp 539–579

  25. Nikolic M, Cesco S, Romheld V, Varanini Z, Pinton R (2003) Uptake of iron (Fe) complexed to water-extractable humic substances by sunflower leaves. J Plant Nutr 26:2243–2252. https://doi.org/10.1081/PLN-120024278

    CAS  Article  Google Scholar 

  26. Olson M (1982) The rise and decline of nations. Yale University Press, New Haven

  27. Parandian F, Samavat S (2012) Effects of fulvic and Humic acid on Anthocyanin, soluble sugar, α-amylase enzyme and some micronurient elements in lilium. IRJABS 3(5):924–929

    CAS  Google Scholar 

  28. Pilana N, Kaplan M (2003) Investigation of effects on nutrient uptake of humic acid applications of different forms to strawberry plant. J Plant Nutr 26(4):835–843. https://doi.org/10.1081/PLN-120018568

    CAS  Article  Google Scholar 

  29. Pinton R, Cesco S, Santi S, Agnolon F, Varanini Z (1999) Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants. Plant Soil 210:145–157. https://doi.org/10.1023/A:1004329513498

    CAS  Article  Google Scholar 

  30. Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas-Triana M, Paz- Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69(4):361–373. https://doi.org/10.1007/s11103-008-9380-y

    CAS  Article  PubMed  Google Scholar 

  31. Sabzehzari M, Naghavi MR (2019a) Phyto-miRNAs-based regulation of metabolites biosynthesis in medicinal plants. Gene 682:13–24. https://doi.org/10.1016/j.gene.2018.09.049

    CAS  Article  PubMed  Google Scholar 

  32. Sabzehzari M, Naghavi MR (2019b) Phyto-miRNA: a molecule with beneficial abilities for plant biotechnology. Gene 683:28–34. https://doi.org/10.1016/j.gene.2018.09.054

    CAS  Article  PubMed  Google Scholar 

  33. Sabzehzari M, Hoveidamanesh S, Modarresi M, Mohammadi V (2019) Morphological, anatomical, physiological, and cytological studies in diploid and tetraploid plants of Plantago Psyllium. Plant Cell Tissue Organ Cult 139:131–137. https://doi.org/10.1007/s11240-019-01670-y

    CAS  Article  Google Scholar 

  34. Sabzehzari M, Naghavi MR, Bozari M, Orafai H, Johnston TP, Sahebkar A (2020a) Pharmacological and therapeutic aspects of plants from the genus ferula: a comprehensive review. Mini Rev Med Chem. https://doi.org/10.2174/1389557520666200505125618

    Article  PubMed  Google Scholar 

  35. Sabzehzari M, Hoveidamanesh S, Modarresi M, Mohammadi V (2020b) Morphological, anatomical, physiological, and cytological studies in diploid and tetraploid plants of Ispaghul (Plantago ovata Forsk.). Genet Resour Crop Evol 67:129–137. https://doi.org/10.1007/s10722-019-00846-x

    CAS  Article  Google Scholar 

  36. Sabzehzari M, Zeinali M, Naghavi MR (2020c) Alternative sources and metabolic engineering of taxol: advances and future perspectives. Biotechnol Adv 43:107569. https://doi.org/10.1016/j.biotechadv.2020.107569

    CAS  Article  PubMed  Google Scholar 

  37. Sabzehzari M, Zeinali M, Naghavi MR (2020d) CRISPR-based metabolic editing: next-generation metabolic engineering in plants. Gene 759:144993. https://doi.org/10.1016/j.gene.2020.144993

    CAS  Article  PubMed  Google Scholar 

  38. Schenk MK, Barber SA (1979) Phosphate uptake by corn as affected by soil characteristics and root morphology. Soil Sci Soc Am J 43:880–883

    CAS  Article  Google Scholar 

  39. Sharif M, Khattak RA, Sarir MS (2002) Effect of different levels of lignitic coal derived humic acid on growth of maize plants. Commun Soil Sci Plan 33(19–20):3567–3580

    CAS  Article  Google Scholar 

  40. Sharma RA, Singh R (2013) A review on Phyla nodiflora Linn.: a wild wetland medicinal herb. Int J Pharm Sci Rev Res 20(1):57–63

    CAS  Google Scholar 

  41. Shin KS, Chakrabarty D, Paek KY (2002) Sprouting rate, change of carbohydrate contents and related enzymes during cold treatment of lily bulblets. Sci Hortic 96:195–204. https://doi.org/10.1016/S0304-4238(02)00087-0

    CAS  Article  Google Scholar 

  42. Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63:995–1001

    Article  Google Scholar 

  43. Theunissen JP, Ndakidemi A, Laubscher CP (2010) Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. Int J Phys Sci 5(13):1964–1973

    CAS  Google Scholar 

  44. Wanger GJ (1979) Content and vacuole/extra vacuole distribution of neutral sugars, free amino acids and anthocyanin in protoplast. Plant Physiol 64:88–93

    Article  Google Scholar 

  45. Yashvanth S, Shobha RS, Srinivasa RA, Sakunthala M (2012) Microscopic and micro chemical evaluation (elemental Analysis) of the medicinal herb, Lippia nodiflora (Linn.) Rich (Phyla nodiflora Linn. Green). Asian Pac J Trop Dis 2:S124–S129. https://doi.org/10.1016/S2222-1808(12)60137-6

    CAS  Article  Google Scholar 

  46. Zhang L, Sun XY, Tian Y, Gong XG (2014) Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci Hortic 176:70–78. https://doi.org/10.1016/j.scienta.2014.06.021

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Dr. Mohammad Sabzehzari, University of Tehran, Tehran, Iran for his review of the manuscript and helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Azizollah Khandan-Mirkohi.

Ethics declarations

Conflict of interest

To the best of our knowledge, the named authors have no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by C. L. Cespedes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalili, S., Khandan-Mirkohi, A. Humic acid improves morpho-physiological and biochemical traits of Phyla nodiflora. Acta Physiol Plant 43, 133 (2021). https://doi.org/10.1007/s11738-021-03292-4

Download citation

Keywords

  • Bio-fertilizer
  • Covering plant
  • Rooting
  • Spray application
  • Urban landscape