Effect of chromium on seed germination, early seedling growth and chromium accumulation in tomato genotypes

Abstract

Forty-five tomato (Solanum lycopersicum) genotypes were used for evaluating chromium (Cr) tolerance and Cr accumulation in seedling by in vitro culture. Tomato seeds were cultured on Murashige-Skoog medium supplemented with 1.5 mM Cr (K2Cr2O7) for four weeks. Reduced germination percentage and delayed germination during 14 days was observed in more than 90% genotypes as compared to the control, but only half of genotypes showed obvious decrease in seedling survival rate. Chromium treatment displayed significantly negative effect on shoot length in all genotypes but significant inhibitory on shoot dry weight was recorded only in 41 genotypes. The highest Cr accumulation in shoot was 3.92 mg g−1 DW in ‘M-82’ and Cr accumulation greater than 2 mg g−1 DW was found in 6 genotypes. Three genotypes (‘LA3708’, ‘CLN2777H’ and ‘CLN1621L’) showed higher Cr uptake (more than 9.8 μg per shoot) than other genotypes because of their high biomass of shoot. Considering Cr tolerance (with higher germination rate, seedling survival rate and shoot biomass in Cr treatment) and Cr accumulation (higher Cr concentration and uptake in shoot) simultaneously, ‘CLN2777H’ and ‘CLN1621L’ can be suggested as the potential tomato genotypes for Cr phytoremediation of polluted sites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Akinci IE, Akinci S (2010) Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). Afri J Biotech 9:4589–4594

    CAS  Google Scholar 

  2. Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG (2003) Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): chromate−plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37:1859–1864. https://doi.org/10.1021/es0208916

    CAS  Article  PubMed  Google Scholar 

  3. Almas F, Hassan A, Bibi A, Ali M, Lateef S, Mahmood T, Rasheed A, Quraishi UM (2018) Identification of genome-wide single-nucleotide polymorphisms (SNPs) associated with tolerance to chromium toxicity in spring wheat (Triticum aestivum L.). Plant Soil 422:371–384. https://doi.org/10.1007/s11104-017-3436-1

    CAS  Article  Google Scholar 

  4. Amin H, Arain BA, Abbasi MS, Amin F, Jahangir TM, Soomro N (2019) Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation. Inter J Phytoremed 21:352–363. https://doi.org/10.1080/15226514.2018.1524837

    CAS  Article  Google Scholar 

  5. Ashfaque F, Inam A, Inam A, Iqbal S, Sahay S (2017) Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). S Afr J Bot 111:153–160. https://doi.org/10.1016/j.sajb.2017.03.002

    CAS  Article  Google Scholar 

  6. Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993) Effect of chromium on seed germination, seedling growth and yield of peas. Agri Ecosyst Environ 47:47–57. https://doi.org/10.1016/0167-8809(93)90135-C

    CAS  Article  Google Scholar 

  7. Borges KLR, Salvato F, Alcântara BK, Nalin RS, Piotto FÂ, Azevedo RA (2018) Temporal dynamic responses of roots in contrasting tomato genotypes to cadmium tolerance. Ecotoxicology 27:245–258. https://doi.org/10.1007/s10646-017-1889-x

    CAS  Article  PubMed  Google Scholar 

  8. Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867. https://doi.org/10.1016/j.biortech.2010.03.027

    CAS  Article  PubMed  Google Scholar 

  9. Cutright T, Gunda N, Kurt F (2010) Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Inter J Phytoremed 12:562–573. https://doi.org/10.1080/15226510903353146

    CAS  Article  Google Scholar 

  10. Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res 18:82–90. https://doi.org/10.1007/s11356-010-0354-7

    CAS  Article  Google Scholar 

  11. di Toppi LS, Fossati F, Musetti R, Mikerezi I, Faval MA (2002) Effects of hexavalent chromium on maize, tomato, and cauliflower plants. J Plant Nutri 25:701–717. https://doi.org/10.1081/PLN-120002953

    Article  Google Scholar 

  12. Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76. https://doi.org/10.1002/bit.22280

    CAS  Article  PubMed  Google Scholar 

  13. Drangert JO, Tonderski K, McConville J (2018) Extending the European Union waste hierarchy to guide nutrient-effective urban sanitation toward global food security—opportunities for phosphorus recovery. Front Sustain Food Syst 2:3. https://doi.org/10.3389/fsufs.2018.00003

    Article  Google Scholar 

  14. Gabarrón M, Faz A, Acosta JA (2017) Effect of different industrial activities on heavy metal concentrations and chemical distribution in topsoil and road dust. Environ Earth Sci 76:129. https://doi.org/10.1007/s12665-017-6449-4

    CAS  Article  Google Scholar 

  15. Gatti E (2008) Micropropagation of Ailanthus altissima and in vitro heavy metal tolerance. Biol Plant 52:146–148. https://doi.org/10.1007/s10535-008-0030-7

    CAS  Article  Google Scholar 

  16. Gharaibeh MA, Albalasmeh AA, Marschner B, Saleem Y (2016) Cadmium uptake and translocation of tomato in response to simulated irrigation water containing elevated concentrations of cadmium and zinc in clayey soil. Water Air Soil Pollut 227:133. https://doi.org/10.1007/s11270-016-2829-8

    CAS  Article  Google Scholar 

  17. Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peters LP, Azevedo RA (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28:803–816. https://doi.org/10.1007/s10534-015-9867-3

    CAS  Article  PubMed  Google Scholar 

  18. Henriques FS (2010) Changes in biomass and photosynthetic parameters of tomato plants exposed to trivalent and hexavalent chromium. Biol Plant 54:583–586. https://doi.org/10.1007/s10535-010-0105-0

    CAS  Article  Google Scholar 

  19. Herath I, Iqbal MCM, Al-Wabel MI, Abduljabbar A, Ahmad M, Usman ARA, Ok YS, Vithanage M (2017) Bioenergy-derived waste biochar for reducing mobility, bioavailability, and phytotoxicity of chromium in anthropized tannery soil. J Soils Sediments 17:731–740. https://doi.org/10.1007/s11368-015-1332-y

    CAS  Article  Google Scholar 

  20. Hou J, Liu G, Xue W, Fu W, Liang B, Liu X (2014) Seed germination, root elongation, root-tip mitosis, and micronucleus induction of five crop plants exposed to chromium in fluvo-aquic soil. Environ Toxi Chem 33:671–676. https://doi.org/10.1002/etc.2489

    CAS  Article  Google Scholar 

  21. Ishchenko V (2018) Environment contamination with heavy metals contained in waste. Environ Probl 3:21–24

    Google Scholar 

  22. Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2016) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci 62:648–662. https://doi.org/10.1080/03650340.2015.1082032

    CAS  Article  Google Scholar 

  23. Jun R, Ling T, Guanghua Z (2009) Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. Inter J Environ Sci Tech 6:571–578. https://doi.org/10.1007/BF03326097

    CAS  Article  Google Scholar 

  24. Kumar A, Maiti SK (2013) Availability of chromium, nickel and other associated heavy metals of ultramafic and serpentine soil /rock and in plants. Inter J Emerg Technol Adv Eng 3:256–268

    Google Scholar 

  25. Kumar V, Suryakant SP, Kumar S, Kumar N (2016) Effect of chromium toxicity on plants: a review. Agriways 4:107–120

    CAS  Google Scholar 

  26. Lilli MA, Moraetis D, Nikolaidis NP, Karatzas GP, Kalogerakis N (2015) Characterization and mobility of geogenic chromium in soils and river bed sediments of Asopos basin. J Hazard Mater 281:12–19. https://doi.org/10.1016/j.jhazmat.2014.07.037

    CAS  Article  PubMed  Google Scholar 

  27. Lim SL, Wu TY, Lim PN, Shak KPY (2015) The use of vermicompost in organic farming: overview, effects on soil and economics. J Sci Food Agric 95:1143–1156. https://doi.org/10.1002/jsfa.6849

    CAS  Article  PubMed  Google Scholar 

  28. López-Luna J, Silva-Silva MJ, Martinez-Vargas S, Mijangos-Ricardez OF, González-Chávez MC, Solís-Domínguez FA, Cuevas-Díaz MC (2016) Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Sci Total Environ 565:941–950. https://doi.org/10.1016/j.scitotenv.2016.01.029

    CAS  Article  PubMed  Google Scholar 

  29. Lukina AO, Boutin C, Rowland O, Carpenter DJ (2016) Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants. Chemosphere 162:355–364. https://doi.org/10.1016/j.chemosphere.2016.07.055

    CAS  Article  PubMed  Google Scholar 

  30. Mathur S, Kalaji H, Jajoo A (2016) Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 54:185–192. https://doi.org/10.1007/s11099-016-0198-6

    CAS  Article  Google Scholar 

  31. Medda S, Mondal NK (2017) Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann Agrar Sci 15:396–401. https://doi.org/10.1016/j.aasci.2017.05.022

    Article  Google Scholar 

  32. Mohanty M, Patra HK (2016) Tolerance potential and physiological responses of Helianthus annuus L. exposed to varying doses of hexavalent chromium. J Mater Environ Sci 7:2221–2228

    CAS  Google Scholar 

  33. Moral R, Pedreno JN, Gomez I, Mataix J (1995) Effects of chromium on the nutrient element content and morphology of tomato. J Plant Nutr 18:815–822. https://doi.org/10.1080/01904169509364940

    CAS  Article  Google Scholar 

  34. Munn J, January M, Cutright TJ (2008) Greenhouse evaluation of EDTA effectiveness at enhancing Cd, Cr, and Ni uptake in Helianthus annuus and Thlaspi caerulescens. J Soils Sediments 8:116–122. https://doi.org/10.1065/jss2008.02.274

    CAS  Article  Google Scholar 

  35. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    CAS  Article  Google Scholar 

  36. Pajević S, Borišev M, Nikolić N, Arsenov DD, Orlović S, Župunski M (2016) Phytoextraction of heavy metals by fast-growing trees: a review. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: Management of environmental contaminants, Vol. 3. Springer, Switzerland, pp 29–64. doi: https://doi.org/10.1007/978-3-319-40148-5_2

  37. Pandey VC, Bajpai O (2019) Phytoremediation: From theory toward practice. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier Inc., pp 1–49. doi: https://doi.org/10.1016/B978-0-12-813912-7.00001-6

  38. Patil SS, Kaushik G (2016) Heavy metal assessment in water and sediments at Jaikwadi dam (Godavari river) Maharashtra, India. Inter J Environ 5:75–88. https://doi.org/10.3126/ije.v5i2.15008

    Article  Google Scholar 

  39. Paul D, Choudhary B, Gupta T, Jose MT (2015) Spatial distribution and the extent of heavy metal and hexavalent chromium pollution in agricultural soils from Jajmau, India. Environ Earth Sci 73:3565–3577. https://doi.org/10.1007/s12665-014-3642-6

    CAS  Article  Google Scholar 

  40. Piotto FA, Carvalho MEA, Souza LA, Rabêlo FHS, Franco MR, Batagin-Piotto KD, Azevedo RA (2018) Estimating tomato tolerance to heavy metal toxicity: cadmium as study case. Environ Sci Pollut Res 25:27535–27544. https://doi.org/10.1007/s11356-018-2778-4

    CAS  Article  Google Scholar 

  41. Prabhu SG, Srinikethan G, Hegde S (2019) Spontaneous Cr(VI) and Cd(II) biosorption potential of native pinnae tissue of Pteris vittata L., a tropical invasive pteridophyte. Inter J Phytoremed 21:380–390. https://doi.org/10.1080/15226514.2018.1524845

    CAS  Article  Google Scholar 

  42. Ramírez V, Baez A, López P, Bustillos R, Villalobos MÁ, Carreño R, Contreras JL, Muñoz-Rojas J, Fuentes LE, Martínez J, Munive JA (2019) Chromium hyper-tolerant Bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite Trees (Prosopis laevigata). Front Microbiol 10:1833. https://doi.org/10.3389/fmicb.2019.01833

    Article  PubMed  PubMed Central  Google Scholar 

  43. Redondo-Gómez S, Mateos-Naranjo E, Vecino-Bueno I, Feldman SR (2011) Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J Hazard Mater 185:862–869. https://doi.org/10.1016/j.jhazmat.2010.09.101

    CAS  Article  PubMed  Google Scholar 

  44. Saha P, Shinde O, Sarkar S (2017) Phytoremediation of industrial mines wastewater using water hyacinth. Inter J Phytoremediat 19:87–96. https://doi.org/10.1080/15226514.2016.1216078

    CAS  Article  Google Scholar 

  45. Saleh J, Ghasemi H, Shahriari A, Alizadeh F, Hosseini Y (2017) Phytoremediation potential of tomato for Cd and Cr removal from polluted soils. Inter J Agri Biosyst Eng 11:268–271

    Google Scholar 

  46. Sampanpanish P, Pongsapich W, Khaodhiar S, Khan E (2006) Chromium removal from soil by phytoremediation with weed plant species in Thailand. Water Air Soil Pollut: Focus 6:191–206. https://doi.org/10.1007/s11267-005-9006-1

    CAS  Article  Google Scholar 

  47. Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A (2006) Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere 64:1695–1703. https://doi.org/10.1016/j.chemosphere.2006.01.005

    CAS  Article  PubMed  Google Scholar 

  48. Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533. https://doi.org/10.1016/j.chemosphere.2017.03.074

    CAS  Article  PubMed  Google Scholar 

  49. Sharma I, Pati PK, Bhardwaj R (2011) Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicol 20:862–874. https://doi.org/10.1007/s10646-011-0650-0

    CAS  Article  Google Scholar 

  50. Smykalova I, Vrbova M, Tejklova E, Vetrovcova M, Griga M (2010) Large scale screening of heavy metal tolerance in flax/linseed (Linum usitatissimum L.) tested in vitro. Ind Crop Prod 32:527–533

    CAS  Article  Google Scholar 

  51. Soltani E, Ghaderi-Far F, Baskin CC, Baskin JM (2015) Problems with using mean germination time to calculate rate of seed germination. Aust J Bot 63:631–635. https://doi.org/10.1071/BT15133

    Article  Google Scholar 

  52. Sousa RS, Nunes LAPL, Lima AB, Melo WJ, Antunes JEL, Araujo ASF (2018) Chromium accumulation in maize and cowpea after successive applications of composted tannery sludge. Acta Sci Agron 40:e35361. https://doi.org/10.4025/actasciagron.v40i1.35361

    Article  Google Scholar 

  53. Steinbrecher T, Leubner-Metzger G (2017) The biomechanics of seed germination. J Exp Bot 68:765–783. https://doi.org/10.1093/jxb/erw428

    CAS  Article  PubMed  Google Scholar 

  54. Stoikou V, Andrianos V, Stasinos S, Kostakis MG, Attiti S, Thomaidis NS, Zabetakis I (2017) Metal uptake by sunflower (Helianthus annuus) irrigated with water polluted with chromium. Foods 6:51. https://doi.org/10.3390/foods6070051

    CAS  Article  PubMed Central  Google Scholar 

  55. Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309. https://doi.org/10.1016/j.envint.2015.12.017

    CAS  Article  PubMed  Google Scholar 

  56. Trebolazabala J, Maguregui M, Morillas H, García-Fernandez Z, de Diego A, Madariaga JM (2017) Uptake of metals by tomato plants (Solanum lycopersicum) and distribution inside the plant: field experiments in Biscay (Basque Country). J Food Compos Anal 59:161–169. https://doi.org/10.1016/j.jfca.2017.02.013

    CAS  Article  Google Scholar 

  57. Venkatachalam P, Priyanka N, Manikandan K et al (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127. https://doi.org/10.1016/j.plaphy.2016.09.004

    CAS  Article  PubMed  Google Scholar 

  58. Vwioko E, Digwe K (2018) Comparing effects of copper and chromium treatments on growth of Cyperus esculentus L. in field and in vitro studies and further explanation by restriction fragment length polymorphism analysis. East Afri J Sci 12:41–50

    Google Scholar 

  59. Wu CC, Liu J, Zhang XH, Wei SG (2018) Phosphorus enhances Cr(VI) uptake and accumulation in Leersia hexandra Swartz. Bull Environ Contam Tox 101:738–743. https://doi.org/10.1007/s00128-018-2445-y

    CAS  Article  Google Scholar 

  60. Xiao S, Zhang Q, Chen X, Dong F, Chen H, Liu M, Ali I (2019) Speciation distribution of heavy metals in uranium mining impacted soils and impact on bacterial community revealed by high-throughput sequencing. Front Microbiol 10:1867. https://doi.org/10.3389/fmicb.2019.01867

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang X, Zhang X, Chen Z (2017) Biosorption of Cr(VI) from aqueous solution by biochar derived from the leaf of Leersia hexandra Swartz. Environ Earth Sci 76:67. https://doi.org/10.1007/s12665-016-6336-4

    CAS  Article  Google Scholar 

  62. Zheng Y, Xu W, He Z, Ma M (2008) Plant regeneration of the arsenic hyperaccumulator Pteris vittata L. from spores and identification of its tolerance and accumulation of arsenic and copper. Acta Physiol Plant 30:249–255. https://doi.org/10.1007/s11738-007-0114-6

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to China Scholarship Council for financial support. The authors are also greatly thankful to Prof. Nanjappa Ashwath and Dr. Surya Bhattarai from Central Queensland University of Australia for their kind help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lin Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by P. Wojtaszek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hafiz, M.F., Ma, L. Effect of chromium on seed germination, early seedling growth and chromium accumulation in tomato genotypes. Acta Physiol Plant 43, 100 (2021). https://doi.org/10.1007/s11738-021-03267-5

Download citation

Keywords

  • Tomato (Solanum lycopersicum)
  • Chromium
  • Germination
  • Seedling growth
  • In vitro culture