Skip to main content
Log in

Co-contamination of deltamethrin and cadmium induce oxidative stress in tomato plants (Solanum lycopersicum L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Pyrethroids (deltamethrin) are increasingly being used in modern agriculture. In addition, cadmium (Cd) has considerable use in a wide spectrum of industrial fields. Consequently, combined pollution with deltamethrin (DM) and Cd is a common phenomenon in soil. In this study, the toxic effects of DM and Cd were investigated alone and in combination. Plant tomatoes (Solanum lycopersicum L.) were treated with deltamethrin (25 µM) or Cd (100 µM) or with DM–Cd co-contamination for 7 days. Both DM and Cd were significantly affected growth rate and reduced the levels of photosynthetic pigments though Cd seemed to be more deleterious than DM. Furthermore, DM and Cd induced hydrogen peroxide accumulation, lipid peroxidation, upregulated of anti-oxidative enzyme activities (APX, CAT, POD and PAL) and non-enzymatic such as proline, and reduced glutathione. These results revealed that oxidative stress is involved in the toxicity of DM and Cd, and proved that under a co-exposing condition, DM and Cd had a synergistic effect on the growth and content of photosynthetic pigments and an antagonistic interaction on antioxidant defense. Further studies on mixture toxicities are needed to explore the detailed mechanism of synergetic interaction to improve the environmental risk assessment of chemicals by applying the OMIC approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ahammed GJ, Choudhary SP, Chen SC, Xia XJ, Shi K, Zhou YH, Yu JQ (2013) Role of brassino steroids in alleviation of phenanthrene cadmium cocontamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213

    Article  CAS  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2018) Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255(1):79–93

    Article  CAS  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulphide in biological samples. Methods Enzymol 113:548–555

    Article  CAS  Google Scholar 

  • Bashir F, Mahmood U, Siddiqi TO, Muhammad I (2007) The antioxidative response system in Glycine max (L.) Merr exposed to deltamethrin, a synthetic pyrethroid insecticide. Environ Pollut 147:94–100

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studied. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizating the protein dyes binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bruno LB, Karthik C, Ma Y et al (2020) Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere 244:125521

    Article  CAS  Google Scholar 

  • Chigbo C, Batty L, Bartlett R (2013) Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere 90(10):2542–2548

    Article  CAS  Google Scholar 

  • Chrysargyris A, Papakyriakou E, Petropoulos SA, Tzortzakis N (2019) The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. J Hazard Mater 368:584–593. https://doi.org/10.1016/j.jhazmat.2019.01.058

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512. https://doi.org/10.1146/annurev-arplant-043015-112301

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Hendrix S, Amaral Dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:470. https://doi.org/10.3389/fpls.2016.00470

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai LP, Xiong ZT, Huang Y, Li MJ (2006) Cadmium induced changes in pigments, total phenolics, and phenylalanine ammonia lyase activity in fronds of Azolla imbricata. Environ Toxicol. 21(5):505–512

    Article  CAS  Google Scholar 

  • Duran RE, Semra K, Coskun Y (2015) Response of maize (Zea mays L. saccharata Sturt) to different concentration treatments of deltamethrin. Pesticide Biochem Physiol. https://doi.org/10.1016/j.pestbp.2015.03.011

    Article  Google Scholar 

  • Elyazar IRF, Hay SI, Kevin Baird J (2011) Malaria distribution, prevalence, drug resistance and control in Indonesia. Adv Parasitol 74:41–175. https://doi.org/10.1016/B978-0-12-385897-9.00002-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerasimova NG, Pridvorova SM, Ozeretskovskaya OL (2005) Role of L-phenylalanine ammonia Lyase in the induced resistance and susceptibility of sotato plants. Appl Biochem Microbiol 41:103–105. https://doi.org/10.1007/s10438-005-0019-3

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Liu M, Zhong H et al (2020) Responses of the growth and physiological characteristics of Myriophyllum aquaticum to coexisting tetracyclines and copper in constructed wetland microcosms. Environ Pollut 261:114204

    Article  CAS  Google Scholar 

  • Gupta DK, Pena LB, Romero-Puertas MC, Hernández A, Inouhe M, Sandalio LM (2017) NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ. https://doi.org/10.1111/pce.12711

    Article  PubMed  Google Scholar 

  • Hasan MK, Liu C, Wang F, Ahammed GJ, Zhou J, Xu MX, Yu JQ, Xia XJ (2016) Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere 161:536–545. https://doi.org/10.1016/j.chemosphere.2016.07.053

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  Google Scholar 

  • Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66(10):2901–2911

    Article  Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11(2):255–277

    Article  CAS  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  CAS  Google Scholar 

  • Khan MY, Prakash V, Yadav V, Chauhan DK, Prasad SM, Ramawat N, Sharma S (2019) Regulation of cadmium toxicity in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging. Plant Physiol Biochem 142:193–201

    Article  CAS  Google Scholar 

  • Kováčik J, Klejdus B, Bačkor M, Repčák M (2007) Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci. 172:393–399. https://doi.org/10.1016/j.plantsci.2006.10.001

    Article  CAS  Google Scholar 

  • Kováčik J, Novotný V, Bujdoš M et al (2020) Glyphosate does not show higher phytotoxicity than cadmium: Cross talk and metabolic changes in common herb. J Hazard Mater 383:121250

    Article  Google Scholar 

  • Li X, Ke M, Zhang M et al (2018) The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: growth, photosynthesis and antioxidant system. Environ Pollut 232:212–219

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Liu N, Wu Z (2018) Growth and antioxidant response in Ceratophyll umdemersum L. under sodium dodecyl sulfate (SDS), phenol and joint stress. Ecotoxicol Environ Saf 163:188–195

    Article  CAS  Google Scholar 

  • Liu N, Zhong G, Zhou J, Liu Y, Pang Y, Cai H, Wu Z (2019) Separate and combined effects of glyphosate and copper on growth and antioxidative enzymes in Salvinia natans (L.). Sci Total Environ 655:1448–1456

    Article  CAS  Google Scholar 

  • López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385

    Article  Google Scholar 

  • Lu Q, Yaqi S, Irma A, Anadón A, Martínez M, Martínez-Larrañaga MR, Yuan Z, Wang Y, María-Aránzazu M (2019) Deltamethrin toxicity: a review of oxidative stress and metabolism. Environ Res. https://doi.org/10.1016/j.envres.2018.12.045

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol. 22(5):867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  • Nemmiche S (2017) Oxidative signaling response to cadmium exposure. Toxicol Sci 156(1):4–10. https://doi.org/10.1093/toxsci/kfw222

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49(1):249–279

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Foyer CH (2012) Glutathione in plants: an integratedoverview. Plant Cell Environ 35(2):454–484

    Article  CAS  Google Scholar 

  • Oudou HC, Hansen HCB (2002) Sorption of lambda-cyhalothrin, cypermethrin, deltamethrin and fenvalerate to quartz, corundum, kaolinite and montmorillonite. Chemosphere 49:1285–1294

    Article  Google Scholar 

  • Ramborger BP, Ortis Gularte CA, Rodrigues DT, Gayer MC, Sigal Carriço MR, Bianchini MC, Puntel RL, Denardin ELG, Roehrs R (2017) The phytoremediation potential of Plectranthus neochiluson 2,4-dichlorophenoxyacetic acid and the role of antioxidant capacity in herbicide tolerance. Chemosphere 188:231–240. https://doi.org/10.1016/j.chemosphere.2017.08.164

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Shafaqat A, Muhammad Z, Jörg R, Tsang D, Arooj B, Arosha M, Tack FMG, Yong SO (2018) Cadmium phytoremediation potential of Brassica crop species. Sci Total Environ 631–632:1175–1191. https://doi.org/10.1016/j.scitotenv.2018.03.104

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas M, Laura C, Terron-Camero M, Angeles P, Olmedilla A, Sandalio LM (2019) Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environ Exp Bot 161:107–119. https://doi.org/10.1016/j.envexpbot.2018.10.012

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, Del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126

    Article  CAS  Google Scholar 

  • Shahzad B, Tanveer M, Che Z et al (2018) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicol Environ Saf 147:935–944. https://doi.org/10.1016/j.ecoenv.2017.09.066

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Vivek Kumar G, Abhishek K, Bechan S (2017) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5:70. https://doi.org/10.3389/fchem.2017.00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Soares C, Carvalho MEA, Azevedo RA, Fidalgo F (2018) Plants facing oxidative challenges—a little help from the antioxidant networks. Environ Exp Bot 161:4–25. https://doi.org/10.1016/j.envexpbot.2018.12.009

    Article  CAS  Google Scholar 

  • Soaresc C, Pereira R, Spormann S, Fidalgo F (2019) Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants?—evaluation of oxidative damage and antioxidant responses in tomato. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.01.063

    Article  Google Scholar 

  • Song Y, Kai J, Song X, Zhang W, Li L (2015) Long-term toxic effects of deltamethrin and fenvalerante in soil. J Hazard Mater 289:158–164

    Article  CAS  Google Scholar 

  • Suvetha L, Saravanan M, Jang-Hyun H, Ramesh M, Krishnapriya K (2015) Acute and sublethal intoxication of deltamethrin in an Indian major carp, Labeo rohita: hormonal and enzymological responses. J Basic Appl Zool 72:58–65

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants, protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wen Y, Zhang L, Chen Z et al (2016) Chemosphere Co-exposure of silver nanoparticles and chiral herbicide imazethapyr to Arabidopsis thaliana : Enantioselective effects. Chemosphere 145:207–214. https://doi.org/10.1016/j.chemosphere.2015.11.035

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Yun Z, Jing XW, Ji TW, Yan HZ, Kai S, Yun LY, Jing QY (2009) Brassino steroids promote metabolism of pesticides in Cucumber. J Agric Food Chem 57:8406–8413. https://doi.org/10.1021/jf901915a

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Sun S, Zhao N, Yang W, Shi Q, Gong B (2019) COMT 1 over-expression resulting in increased melatonin biosynthesis contributes to the alleviation of carbendazim phytotoxicity and residues in tomato plants. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.05.052

    Article  PubMed  Google Scholar 

  • Yin Y-L, Yue Z, Yan-Hong Z, Kai S, Jie Z, Yunlong Y, Jing-Quan Y, Xiao-Jian X (2016) Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum. J Haz Mater. https://doi.org/10.1016/j.jhazmat.2016.04.070

    Article  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  CAS  Google Scholar 

  • Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M (2020) Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol. https://doi.org/10.1016/j.redox.2020.101475

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Nemmiche.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by S. Srivastava.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touzout, N., Mehallah, H., Moralent, R. et al. Co-contamination of deltamethrin and cadmium induce oxidative stress in tomato plants (Solanum lycopersicum L.). Acta Physiol Plant 43, 91 (2021). https://doi.org/10.1007/s11738-021-03261-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03261-x

Keywords

Navigation