Skip to main content

Advertisement

Log in

Influence of nitrogen supply on gas exchange, chlorophyll fluorescence and grain yield of breeding lines of common bean evaluated in the Amazon region of Colombia

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The common bean (Phaseolus vulgaris L.) is a food crop that provides fiber, vitamins and carbohydrates and it is produced by smallholders in developing countries under nitrogen (N)-depleted and low-fertility soil conditions. Soil acidity and the associated aluminum toxic and phosphorus deficient conditions are known to reduce symbiotic N-fixing ability of common bean. Breeding lines of common bean have been developed to adapt to acid-soil and high-temperature conditions in the Amazon region but the response of these lines to N application was not determined. The present study was conducted with an objective to identify genotypic differences among ten common bean breeding lines (4 Andean, 5 Mesoamerican, 1 interspecific) in their physiological characteristics (gas exchange, chlorophyll fluorescence and photosynthetic efficiency) and their contribution to superior agronomic performance under three different levels of N (0, 60 and 120 kg N ha−1; N0, N60 and N120) supply. We tested the hypothesis that common bean genotypes that combine greater capacity to assimilate carbon with improved ability to mobilize photosynthates to developing pods and seeds could enhance their agronomic performance at different levels of N supply under high-temperature and acid soil-stress conditions in the field. A randomized complete block design with factorial arrangement (3 levels of N × 10 genotypes) in three replications was used for the study. Measurements included photosynthetic gas exchange characteristics (light and CO2-saturated photosynthesis), chlorophyll fluorescence, viability of pollen, leaf N concentration, photosynthetic N use efficiency and grain yield. The increase in supply of N had a significant effect on grain yield and on different photosynthetic characteristics. Results showed that lines with indeterminate growth habit responded better to increase in N supply through their physiological response in improving grain yield. Among the genotypes evaluated, two lines (BFS 10 and SEF 10) were outstanding in their agronomic performance due to greater photosynthetic capacity combined with greater ability to mobilize photosynthates to grain with increase in N supply. These two lines can serve as parents for further improvement in resource use efficiency and multiple-stress resistance of common bean in the tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aires BC, Soratto RP, Guidorizzi FVC (2019) Grain yield and quality of common bean cultivars in response to nitrogen. Científica 47(2):231–238

    Google Scholar 

  • Akram M (2014) Effects of nitrogen application on chlorophyll content, water relations, and yield of maize hybrids under saline conditions. Commun Soil Sci Plant Anal 45(10):1336–1356

    CAS  Google Scholar 

  • Atasay A, Akgül H, Uçgun K, Şan B (2013) Nitrogen fertilization affected the pollen production and quality in apple cultivars “Jerseymac” and “Golden Delicious.” Acta Agric Scand Sect B Soil Plant Sci 63(5):460–465

    Google Scholar 

  • Baker N (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    CAS  PubMed  Google Scholar 

  • Bauerle W, Wang G, Bowden J, Hong C (2006) An analysis of ecophysiological responses to drought in American chestnut. Ann For Sci 63(8):833–842

    Google Scholar 

  • Beebe S (2012) Common bean breeding in the tropics. Plant Breed Rev 36(36):357–426

    Google Scholar 

  • Beebe S, Rao I, Blair M, Acosta J (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks MD, Niyogi KK (2011) Use of a pulse-amplitude modulated chlorophyll fluorometer to study the efficiency of photosynthesis in arabidopsis plants. In: Jarvis R (ed) Chloroplast research in Arabidopsis, methods in molecular biology (Methods and protocols). Humana Press , Totowa, pp 299–310

    Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Google Scholar 

  • Corrales-González M, Rada F, Jaimez R (2015) Efecto del nitrógeno en los parámetros fotosintéticos y de producción del cultivo de la gerbera (Gerbera jamesonii H. Bolus ex Hook. F.). Acta Agron 65(3):255–260

    Google Scholar 

  • Correia MJ, Osório ML, Osório J, Barrote I, Martins M, David MM (2006) Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. Environ Exp Bot 58(1–3):75–84

    CAS  Google Scholar 

  • da Ribeiro JES, Leite AP, Costa JE, de Albuquerque MB, Mielezrski F (2018) Development, physiology and productivity of the common bean under different nitrogen doses. J Agric Sci 10(6):171–183

    Google Scholar 

  • Dai TB, Cao WX, Sun CF, Jiang D, Jing Q (2003) Effect of enhanced ammonium nutrition on photosynthesis and nitrate reductase and glutamine synthetase activities of winter wheat. Chin J Appl Ecol 14:1529–1532

    CAS  Google Scholar 

  • de Lobo FA, de Barros MP, Dalmagro HJ, Dalmolin ÂC, Pereira WE, de Souza ÉC, Vourlitis G, Rodriguez C (2013) Fitting net photosynthetic light-response curves with Microsoft Excel—a critical look at the models. Photosynthetica 51(3):445–456

    CAS  Google Scholar 

  • Di Rienzo J, Balzarini M, Gonzalez L, Casanoves F, Tablada M, Robledo CW (2019) InfoStat versión 2018. Grupo infostat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar. 2019

  • Duursma RA (2015) Plantecophys—an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10(11):e0143346

    PubMed  PubMed Central  Google Scholar 

  • Evans JR, Clarke VC (2019) The nitrogen cost of photosynthesis. J Exp Bot 70(1):7–15

    CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in eaves of C-3 species. Planta 149(1):78–90

    CAS  PubMed  Google Scholar 

  • Flexas J, Díaz-Espejo A, Berry JA, Cifre J, Galmés J, Cifre J, Kaldenhoff R, Medrano H, Ribas-Carbó M (2007) Analysis of leakage in IRGA’s leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. J Exp Bot 58(6):1533–1543

    CAS  PubMed  Google Scholar 

  • Gao J, Wang F, Sun J, Tian Z, Hu H, Jiang S, Dai T (2018) Enhanced Rubisco activation associated with maintenance of electron transport alleviates inhibition of photosynthesis under low nitrogen conditions in winter wheat seedlings. J Exp Bot 69(22):5477–5488

    CAS  PubMed  Google Scholar 

  • Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990(1):87–92

    CAS  Google Scholar 

  • Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) Circlize implements and enhances circular visualization in R. Bioinformatics 30(19):2811–2812

    CAS  PubMed  Google Scholar 

  • Guimarães RAM, Braz AJBP, Simon GA, Ferreira CJB, Braz GBP, da Silveira PM (2017) Resposta de cultivares de feijoeiro a adubação nitrogenada em diferentes estádios fenológicos. Glob Sci Technol 10(1):136–148

    Google Scholar 

  • Guo S, Brück H, Sattelmacher B (2002) Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants. Plant Soil 239(2):267–275

    CAS  Google Scholar 

  • Harrison M, Edwards E, Farquhar G, Nicotra A, Evans J (2009) Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant Cell Environ 32(3):259–270

    CAS  PubMed  Google Scholar 

  • Hayashi T (2011) Analysis of factors related to enhanced sterility due to coolness at the young microspore stage under high nitrogen supply in rice (Oryza sativa L.). Bull Natl Agric Res Cent Tohoku Reg 113:67–96

    Google Scholar 

  • Jiménez-Suancha S, Alvarado O, Balaguera-López H (2015) Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Rev Colomb de Cienc Hortíc 9(1):149–160

    Google Scholar 

  • Jin X, Yang G, Tan G, Zhoo C (2015) Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Sci Rep 5(9311):1–9

    Google Scholar 

  • Koning L, Veste M, Freese D, Lebzien S (2015) Effects of nitrogen and phosphate fertilization on leaf nutrient content, photosynthesis, and growth of the novel bioenergy crop Fallopia sachalinensis cv. ‘Igniscum Candy.’ J Appl Bot Food Qual 88:22–28

    Google Scholar 

  • Kornegay J, White JW, de la Cruz OO (1992) Growth habit and gene pool effects on inheritance of yield in common bean. Euphytica 62(3):171–180

    Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    CAS  PubMed  Google Scholar 

  • Krause GH, Winter K, Matsubara S, Krause B, Jahns P, Virgo A, Aranda J, Garcia M (2012) Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. Photosynth Res 113:273–285

    CAS  PubMed  Google Scholar 

  • Lau TC, Stephenson AG (1993) Effects of soil nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). Am J Bot 80:763–768

    CAS  Google Scholar 

  • Lawlor D (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53:773–787. https://doi.org/10.1093/jexbot/53.370.773

    Article  CAS  PubMed  Google Scholar 

  • Leal FT, Filla VA, Bettiol JVT, Sandrini FDOT, Mingotte FLC, Lemos LB (2019) Use efficiency and responsivity to nitrogen of common bean cultivars. Ciênc e Agrotechnol 43:1–13

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148(34):350–382

    CAS  Google Scholar 

  • Long S, Bernacchi C (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54(392):2393–2401

    CAS  PubMed  Google Scholar 

  • Long L, Ma G, Wan Y, Song C, Sun J, Qin R (2013) Effects of nitrogen fertilizer level on chlorophyll fluorescence characteristics in flag leaf of super hybrid rice at late growth stage. Rice Sci 20(3):220–228

    Google Scholar 

  • Lu C, Zhang J (2000) Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Sci 151:135–143

    CAS  PubMed  Google Scholar 

  • Lynch J, Nubia S, Rodriguez H (1994) Photosynthetic nitrogen-use efficiency in relation to leaf longevity in common bean. Crop Sci 34:1284–1290

    Google Scholar 

  • Martins S, Detmann K, Reis J, Pereira L, Sanglard L, Rogalski M, DaMatta F (2013) Photosynthetic induction and activity of enzymes related to carbon metabolism: insights into the varying net photosynthesis rates of coffee sun and shade. Theor Exp Plant Physiol 25(1):62–69

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence, a practical guide. J Exp Bot 51:659–668

    CAS  Google Scholar 

  • Mi G, Chen F, Zhang F (2007) Physiological and genetic mechanisms for nitrogen use efficiency in maize. J Crop Sci Biotechnol 10:57–63

    Google Scholar 

  • Michelangeli J, Ricaute J, Sinclair T, Rao I, Beebe S (2019) Influence of plant density and growth habit of common bean on leaf area development and N accumulation. J Crop Improv. https://doi.org/10.1080/15427528.2019.1644694

    Article  Google Scholar 

  • Murtaza G, Rasool F, Habib R, Javed T, Sardar K, Ayub MM, Ayub MA, Rasool A (2016) A review of morphological, physiological and biochemical responses of plants under drought stress conditions. Imp J Interdiscip Res 2:1600–1606

    Google Scholar 

  • Peres R, Camillo M, Arf O (2004) Teor de clorofila e produtividade do feijoeiro em razão da adubação nitrogenada. Pesq Agropec Bras Brasília 39(9):895–990

    Google Scholar 

  • Pinheiro J, Bates D, Debroy S, Sarkar D (2012) Linear and nonlinear mixed effects models. R Package Version 3(1–104):31–74

    Google Scholar 

  • Polania J, Poschenrieder C, Rao I, Beebe S (2016) Estimation of phenotypic variability in symbiotic nitrogen fixation ability of common bean under drought stress using 15N natural abundance in grain. Eur J Agron 79:66–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polanıa J, Rao I, Cajiao C, Rivera M, Bodo R, Beebe S (2016) Physiological traits associated with drought resistance in andean and mesoamerican genotypes of common bean (Phaseolus vulgaris L.). Euphytica 210:17–29

    Google Scholar 

  • Porch G, Jahn M (2001) Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ 24:723–731

    Google Scholar 

  • R Development Core Team (2017) R: A language and environment for statistical computing. R. Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Ramaekers L, Galeano CH, Garzón N, Vanderleyden J, Blair MW (2012) Identifying quantitative trait loci for symbiotic nitrogen fixation capacity and related traits in common bean. Mol Breed 31(1):163–180

    Google Scholar 

  • Rao I, Miles J, Beebe S, Horst W (2016) Root adaptations to soils with low fertility and aluminium toxicity. Ann Bot 118:593–605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rios VS, Rios JA, Aucique-Pérez CE, Silveira PR, Barros AV, Rodrigues FÁ (2018) Leaf gas exchange and chlorophyll a fluorescence in soybean leaves infected by Phakopsora pachyrhizi. J Phytopathol 166(2):75–85

    CAS  Google Scholar 

  • Rosas JC (2014) El cultivo del frijol común en América tropical. Escuela Agricola Panamericana, Zamorano, p 64

    Google Scholar 

  • Saberali S, Modarres-Sanavy S, Bannayan M, Aghaalikhani M, Haghayegh G, Hoogenboom G (2015) Common bean canopy characteristics and N assimilation as affected by weed pressure and nitrogen rate. J Agric Sci 154(04):598–611

    Google Scholar 

  • Schulze E, Beck E, Müller K (2005) Plant ecology. Springer, Berlin, p 702

    Google Scholar 

  • Seepaul R, George S, Wright D (2016) Comparative response of Brassica carinata and B. napus vegetative growth, development and photosynthesis to nitrogen nutrition. Ind Crops Prod 94:872–883

    CAS  Google Scholar 

  • Shrestha S, Brueck H, Asch F (2012) Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. J Photochem Photobiol B Biol 113:7–13

    CAS  Google Scholar 

  • Soratto RP, Catuchi TA, Souza EDFCD, Garcia JLN (2017) Plant density and nitrogen fertilization on common bean nutrition and yield. Rev Caatinga 30(3):670–678

    Google Scholar 

  • Suárez JC, Polanía JA, Bastidas ATC, Suárez LR, Beebe S, Rao IM (2018a) Agronomical, phenological and physiological performance of common bean lines in the Amazon region of Colombia. Theor Exp Plant Physiol 30(4):303–320

    Google Scholar 

  • Suárez JC, Melgarejo LM, Casanoves F, Di Rienzo JA, DaMatta FM, Armas C (2018b) Photosynthesis limitations in cacao leaves under different agroforestry systems in the Colombian Amazon. PLoS ONE 13(11):e0206149

    Google Scholar 

  • Suárez JC, Polanía JA, Contreras AT, Rodríguez L, Machado L, Ordoñez C, Beebe S, Rao IM (2020) Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance. Euphytica 216:28. https://doi.org/10.1007/s10681-020-2565-4

    Article  CAS  Google Scholar 

  • Sun L, Xu H, Hao H, An S, Lu C, Wu R, Su W (2019) Effects of bensulfuron-methyl residue on photosynthesis and chlorophyll fluorescence in leaves of cucumber seedlings. PLoS ONE 14(4):e0215486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toso V, Andriolo JL, Lerner MA, Schmitt OJ, Cardoso FL (2017) Nitrogen in plant growth and yield of common bean. J Plant Nutr 40(14):2006–2013

    CAS  Google Scholar 

  • Towsend A, Retkute R, Chinnathambi K, Randall J, Foulkes J, Carmo-Silva E, Murchie E (2017) Suboptimal acclimation of photosynthesis to light in wheat canopies. Plant Physiol 176(2):1233–1246

    Google Scholar 

  • Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J (2017) Visualization of a correlation matrix. R Packag Version 0.73 230(231):11–15

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1985) Leaf conductance in relation to rate of CO2 assimilation. I. Influence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO2 during ontogeny. Plant Physiol 78:821–825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZB, Rao IM, Horst WJ (2013) Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil 372(1–2):3–25

    CAS  Google Scholar 

  • Yin L, Xu H, Dong S, Chu J, Dai X, He M (2018) Strategies to improve photosynthetic nitrogen use efficiency with no yield penalty: lessons from late-sown winter wheat. bioRxiv 379552

  • Zhu J, Liang Y, Zhu Y, Hao W, Lin X, Wu X, Luo A (2012) The interactive effects of water and fertilizer on photosynthetic capacity and yield in tomato plants. Aust J Crop Sci 6(2):200–209

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the CGIAR Research Program on Grain Legumes and Dryland Cereals for the development of breeding lines of common bean. We would also like to thank all donors who supported this work through their contributions to the CGIAR Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Suárez.

Additional information

Communicated by L. Bavaresco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48170 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez, J.C., Polanía, J.A., Anzola, J.A. et al. Influence of nitrogen supply on gas exchange, chlorophyll fluorescence and grain yield of breeding lines of common bean evaluated in the Amazon region of Colombia. Acta Physiol Plant 43, 66 (2021). https://doi.org/10.1007/s11738-021-03233-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03233-1

Keywords

Navigation