Skip to main content

Advertisement

Log in

Rootstocks increase grapevine tolerance to NaCl through ion compartmentalization and exclusion

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The productivity of Vitis vinifera L. is limited by salinity, especially under water and drainage deficits, and could aggravate with climate change. The use of tolerant rootstocks is a strategy against salinity that helps yield maintenance. Some Argentinean grapevine cultivars show tolerance to salinity, although the mechanisms are yet unknown. The physiology of Malbec vines was evaluated with 4 V. vinifera rootstocks: Torrontés Riojano (TR) and Torrontés Sanjuanino (TS) Argentine varieties, and the hybrids 3309 Courdec (3309C, salinity sensitive) and 1103 Paulsen (1103P, tolerant), submitted to NaCl 0, 50 or 100 mM during 65 days. Mild and high salinity levels reduced vegetative growth (50 and 70%, respectively), photosynthesis and leaf water content. Midday ΨL reached − 1.16 MPa (moderate water stress) with 100 mM NaCl, which expressed as oxidative damage in mature leaves, thus affecting protein content, membrane integrity and lipid peroxidation. Proline accumulation in leaves increased in 1103P and TR under 50 mM, while 1103P showed the highest value in 100 mM NaCl. An increased vegetative expression and vigor were induced by TS. Accumulation of Na+ and Cl ions in roots was found in TR and TS, suggesting a compartmentalization strategy, while 1103P excluded them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora-Morphol Distribution Funct Ecol Plants 199:361–376

    Article  Google Scholar 

  • Askri H, Gharbi F, Rejeb S, Mliki A, Ghorbel A (2018) Differential physiological responses of Tunisian wild grapevines (Vitis vinifera L. subsp. sylvestris) to NaCl salt stress. Brazilian J Botany 41:795–804

    Article  Google Scholar 

  • Barr H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2002) Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant Cell Environ 25:737–748

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cavagnaro JB, Ponce MT, Guzmán J, Cirrincione MA (2006) Argentinean cultivars of Vitis vinifera grow better than European ones when cultured in vitro under salinity. Biocell 30:1–7

    Article  PubMed  Google Scholar 

  • Coombe BG (1995) Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110

    Article  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  CAS  PubMed  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Prasad PV (2013) Effects of salinity on ion transport, water relations and oxidative damage. Ecophysiology and Responses of Plants under Salt Stress, pp 89–114. Springer

  • Downton W (1977) Chloride accumulation in different species of grapevine. Sci Hortic 7:249–253

    Article  CAS  Google Scholar 

  • Fisarakis I, Chartzoulakis K, STavrakas D, (2001) Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agric Water Manag 51:13–27

    Article  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    Article  CAS  PubMed  Google Scholar 

  • Fozouni M, Abbaspour N, Baneh HD (2012) Leaf water potential, photosynthetic pigments and compatible solutes alterations in four grape cultivars under salinity. Vitis 51:147–152

    CAS  Google Scholar 

  • Fu QQ, Tan YZ, Zhai H, Du YP (2019) Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks. Sci Hortic 243:148–158

    Article  CAS  Google Scholar 

  • Hanana M, Hamrouni L, Hamed K, Abdelly C (2015) Influence of the rootstock/scion ombination on the grapevines behavior under salt tress. Plant Physiol Biochem 3:3

    Google Scholar 

  • Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliott RL (2007) Design and operation of farm irrigation systems, 2nd edn. American Society of Agricultural and Biological Engineers St, Joseph, MI

    Google Scholar 

  • Hossain MA, Hoque MA, Burritt DJ, Fujita M (2014). Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. In: Oxidative damage to plants, Academic Press, Cambridge, pp 477-522

  • Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, Long X. (2013). Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PloS One 8(4)

  • INV (2019) Registro de superficies y viñedos, Instituto Nacional de Vitivinicultura

  • Keller M (2015) The science of grapevines: anatomy and physiology, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  • Livigni S, Lucini L, Sega D, Navacchi O, Pandolfini T, Zamboni A, Varanini Z (2019) The different tolerance to magnesium deficiency of two grapevine rootstocks relies on the ability to cope with oxidative stress. BMC Plant Biol 19:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance–current assessment. J Irrigation Drainage Div 103:115–134

    Google Scholar 

  • Mademba SYF, Bouchereau A, Larher F (2003) Proline accumulation in cultivated citrus and its relationship with salt tolerance. J Hortic Sci Biotechnol 78:617–623

    Article  Google Scholar 

  • Martin L, Vila H (2013) Evaluation of NaCl tolerance on grapevines cultivars and hybrids rootstocks from genus Vitis. Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo 45:165–180

    Google Scholar 

  • Mohammadkhani N, Abbaspour N (2018) Absorption kinetics and efflux of chloride and sodium in the roots of four grape genotypes (Vitis L.) differing in salt Tolerance Iranian. J Sci Technol Trans 42:1779–1793

    Google Scholar 

  • Morábito J, Salatino S, Medina R, Zimmermann M, Filippini MF, Bermejillo A, Nacif N, Campos S, Dediol C, Pizzuolo P (2005) Water quality in the area irrigated by the Mendoza River (Argentina). Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo 37:1–23

    Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R, James R, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nijensohn L (1960) Intoxicación de vides por cloruros. Rev. Instituto Provincial Agropecuario. Ministerio de Economía, Obras Públicas y Riego. Gobierno de Mendoza, Argentina 2:3–28

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Sadzawka ACMA, Demanet R, Flores H, Grez Z, Mora M, Neaman A (2007) 2nd ed, Métodos de Análisis de Tejidos Vegetales. Ed. INIA

  • Shabala S, Tracey AC (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  PubMed  Google Scholar 

  • Shani U, Ben-Gal A (2005) Long-term response of grapevines to salinity: osmotic effects and ion toxicity. Am J Enol Vitic 56:148–154

    Google Scholar 

  • Sharma P, Jha A, Dubey R, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 1–26

  • Storey R, Schachtman D, Thomas M (2003) Root structure and cellular chloride, sodium and potassium distribution in salinized grapevines. Plant, Cell Environ 26:789–800

    Article  CAS  Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl- transport contributing to salt tolerance. Plant, Cell Environ 33:566–589

    Article  CAS  Google Scholar 

  • Tregeagle JM, Tisdall JM, Tester M, Walker RR (2010) Cl- uptake, transport and accumulation in grapevine rootstocks of differing capacity for Cl- exclusion. Funct Plant Biol 37:665–673

    Article  CAS  Google Scholar 

  • Van Leeuwen C, Trégoat O, Choné X, Bois B, Pernet D, Gaudillère JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? OENO One 43:121–134

    Article  Google Scholar 

  • Vásquez-Tello A, Zuily-Fodil Y, Pham Thi AT, Vieira da Silva J (1990) Electrolyte and Pi leakages and soluble sugar content as physiological tests for screening resistance to water stress in Phaseolus and Vigna species. J Exp Bot 41:827–832

    Article  Google Scholar 

  • Vila HF, Di Filippo ML, Venier M, Filippini MF (2014) How rootstocks influence salt tolerance in grapevine? The roles of conferred vigor and ionic exclusion I. Int Symp Grapevine Roots 1136:145–154

    Google Scholar 

  • Walker R, Blackmore D, Clingeleffer P, Correll R (2004) Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) 2. Ion concentrations in leaves and juice. Aust J Grape Wine Res 10:90–99

    Article  CAS  Google Scholar 

  • Walker R, Torokfalvy E, Scott NS, Kriedemann P (1981) An analysis of photosynthetic response to salt treatment in Vitis vinifera. Funct Plant Biol 8:359–374

    Article  Google Scholar 

  • Zhang X, Walker RR, Stevens RM, Prior LD (2002) Yield-salinity relationships of different grapevine (Vitis vinifera L.) scion-rootstock combinations. Aust J Grape Wine Res 8:150–156

    Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by FonCyT (PICT 2013-1856 to RB) and funding from Instituto Nacional de Tecnología Agropecuaria (INTA) and Instituto Nacional de Agua (INA) to HV. RB and FB are fellows of CONICET, HV is a researcher of INTA and LM recipient of a scholarship from FonCyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Berli.

Additional information

Communicated by L. Bavaresco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, L., Vila, H., Bottini, R. et al. Rootstocks increase grapevine tolerance to NaCl through ion compartmentalization and exclusion. Acta Physiol Plant 42, 145 (2020). https://doi.org/10.1007/s11738-020-03136-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03136-7

Keywords

Navigation