Skip to main content

Advertisement

Log in

Dormancy breaking in Teramnus labialis (L.f.) Spreng seeds through liquid nitrogen exposure is based on the modification of the hilar region, cuticle, and macrosclereid

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Teramnus labialis (L.f.) Spreng is a legume that plays an important role in mixed agroecosystems, due to its use as animal feed and its role in restoring soil nitrogen levels. However, its wide-scale use in agriculture and revegetation efforts is limited due to its physically dormant seeds. In our previous study on the effects of seed cryopreservation on seedling vigor in this species, our preliminary findings (using scanning electron microscopy) indicated that liquid nitrogen (LN) disrupted the seed coat in this species and led to improved seedling emergence. In our present study, we use light microscopy to investigate whether LN exposure influences the structure/integrity of the hilar region, cuticle, and macrosclereid in relation to seed imbibitional rate and germination. In terms of thickness, statistically significant differences between treated and control seeds were not observed in the cuticle, macrosclereid, osteosclereid or the counter-packed cell layer. Contrastingly, the percentage of seeds with the hilar region open reached 45% in seeds treated with LN but only 10% in the control seeds. Additionally, 85% of seeds immersed in LN showed cracks and breaks in the cuticle and macrosclereid, which were not present in the control. Seed exposure to LN improved seed imbibition rate and germination significantly relative to control seeds/seedlings. Cryo-stored seeds showed a 5.6 fold-increase in imbibition rate, and 2.6 fold-increase in germination. The results validate the use of LN exposure for breaking physical dormancy in seeds of other legumes that display seed anatomy similar to T. labialis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdallah MMF, Jones RA, El-Beltagy AS (1989) An efficient method to overcome seed dormancy in Scotch broom (Cytisus scoparius). Environ Exp Bot 29:499–505

    Article  Google Scholar 

  • Acharya SN, Kokko EG, Fraser J (1993) Storage duration and freeze-thaw effects on germination and emergence of cicer mikvetch (Astragalus cicer) seeds. J Seed Technol 17:9–21

    Google Scholar 

  • Acharya S, Stout D, Brooke B, Thompson D (1999) Cultivar and storage effects on germination and hard seed content of alfalfa. Can J Plant Sci 79:201–208

    Article  Google Scholar 

  • Acosta Y, Hernández L, Mazorra C, Quintana N, Zevallos BE, Cejas I, Sershen, Lorenzo JC, Martínez-Montero ME, Fontes D (2019) Seed cryostorage enhances subsequent plant productivity in the forage species Teramnus labialis (L.F.) Spreng. CryoLetters 40:36–44

    PubMed  Google Scholar 

  • Acosta Y, Pérez L, Linares C, Hernández L, Escalante D, Pérez A, Zevallos BE, Yabor L, Martínez-Montero ME, Cejas I, Fontes D, Sershen, Lorenzo JC (2020a) Effects of Teramnus labialis (L.f.) Spreng seed cryopreservation on subsequent seed and seedling growth and biochemistry. Acta Physiol Plant. https://doi.org/10.1007/s11738-020-3012-9

    Article  Google Scholar 

  • Acosta Y, Santiago F, Escalante D, Mazorra C, Cejas I, Martínez-Montero ME, Escobar A, Sershen, Hajari E, Lorenzo JC, Fontes D (2020b) Cryo-exposure of Neonotonia wightii Wigth & Am seeds enhances field performance of plants. Acta Physiol Plant. https://doi.org/10.1007/s11738-019-3010-y

    Article  Google Scholar 

  • Alane F, Chabaca R, Ouafi L, Laouar MA, Abdelguerfi A (2016) Break dormancy, germination capacity of medics after different techniques of scarification (physical, chemical and mechanical). Afr J Agri Res 11:340–351

    Article  Google Scholar 

  • Apodaca-Martínez M, Cetina-Alcalá V, Jasso-Mata J, López-López M, González-Rosas H, Uscanga-Mortera E, García-Esteva A (2019) Ruptura de la latencia física y germinación de semillas de Chiranthodendron pentadactylon (Malvaceae). Bot Sci 97:211–217

    Article  Google Scholar 

  • Baskin CC (2003) Breaking physical dormancy in seeds focusing on the lens. New Phytol 158:227–238

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination, 2nd edn. Academic Press, New York

    Google Scholar 

  • Bewley JD, Black M (1994) Seeds: germination, structure and composition. Springer, Boston, pp 1–33

    Book  Google Scholar 

  • Bewley J, Derek KJ, Bradford H, Hilhorst WM, Nonogaki H (2013) Seeds: physiology of development Germination and Dormancy. Springer, New York, p 392

    Book  Google Scholar 

  • Boyce K (1987) Cryopreservation of seed of lucerne, medic and sub clover cultivars in liquid nitrogen. Seed Sci Technol 15:466–468

    Google Scholar 

  • Cardoso FA, Pita JM, Palmeira J (2000) Efecto de la crioconservación sobre la germinación de semillas de leguminosas. Rev Bras Prod Agroind 2:67–71

    Google Scholar 

  • Chen L, Dai S, Ma QJ, Deng XJ, Zhu MW, Li SX (2019) Structure of seed coat of Albizia julibrissin and its relationship with water uptake. Sci Sil Sci 55:46–54

    Google Scholar 

  • Cordoví E, Vieito E (1999) Efecto del intercalamiento de arroz durante la etapa de establecimiento de Teramnus labialis. Past Forr 22:253–259

    Google Scholar 

  • Crews TE, Blesh J, Culman SW, Hayes RC, Jensen ES, Mack MC, Peoples MB, Schipanski ME (2016) Going where no grains have gone before: from early to mid-succession. Agric Ecosyst Environ 223:223–238

    Article  Google Scholar 

  • De Morais LF, Deminicis BB, de Pádua FT, Morenz MJ, Araujo RP, de Nepomuceno DD (2014) Methods for breaking dormancy of seeds of tropical forage legumes. Am J Plant Sci 5(13). https://doi.org/10.4236/ajps.2014.513196

  • de Sousa FH, Marcos-Filho J (2001) The seed coat as a modulator of seed-environment relationships in Fabaceae. Braz J Bot 24:365–375

    Article  Google Scholar 

  • de Souza TV, Voltolini CH, Santos M, Paulilo MTS (2012) Water absorption and dormancy-breaking requirements of physically dormant seeds of Schizolobium parahyba (Fabaceae-Caesalpinioideae). Seed Sci Res 22:169–176

    Article  Google Scholar 

  • Domínguez-Domínguez S, Domínguez-López A, González-Huerta A, Navarro-Galindo S (2007) Cinética de imbibición e isotermas de adsorción de humedad de la semilla de jamaica (Hibiscus sabdariffa L.). Rev Mex Ing Quim 6:309–316

    Google Scholar 

  • Fontes D, Mazorra C, Lazo M, Pulido L, Cubillas N, Rodríguez L, Hernández N, Rodríguez W (2008) Teramnus labialis: leguminosa promisoria para la producción diversificada en fincas citrícolas. Zoot Trop 26:351–354

    Google Scholar 

  • Fontes D, Mazorra C, Acosta Y, Pardo J, Martínez J, Fernandez P, Lavigne C (2018) Productive behavior´s live of herbaceous leguminous coverage in a plantation of guava (Psidium guajava L.) var. Enana Roja Cubana (eea-1840). Univ Cie 7:297–308

    Google Scholar 

  • Gama-Arachchige NS, Baskin JM, Geneve RL, Baskin CC (2013) Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Ann Bot 112:69–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler GE, Tassiane TP, Santos M, Silveira MT (2017) Seed structures in water uptake, dormancy release, and germination of two tropical forest Fabaceae species with physically dormant seeds. Braz J Bot 40:67–77

    Article  Google Scholar 

  • González Y, Mendoza F (1991) Comportamiento de la germinación de Teramnus labialis cv. Semilla Clara. II. Tratamientos antes de almacenar. Past Forr 14:27–32

    Google Scholar 

  • González Y, Sánchez J, Reino J, Muñoz B, Montejo L (2008) Efectos combinados de escarificación y de hidratación parcial en la germinación de semillas frescas de leguminosas. Past Forr 31:1–1

    Google Scholar 

  • Gunn CR (1981) Seeds of Leguminosae. In: Polhill RM, Raven PH (eds) Advances in legume systematics. Royal Botanical Garden, Kew, pp 913–925

    Google Scholar 

  • Hu XW, Wang YR, Y.P. W, Nan ZB, Baskin CC, (2008) Role of the lens in physical dormancy in seeds of Sophora alopecuroides L. (Fabaceae) from North-West China. Aust J Agric Res 59:491–497

    Article  Google Scholar 

  • Hu XW, Wang YR, Wu YP, Baskin CC (2009) Role of the lens in controlling water uptake in seeds of two Fabaceae (Papilionoideae) species treated with sulphuric acid and hot water. Seed Sci Res 19:73–80

    Article  CAS  Google Scholar 

  • ISTA (2005) International Rules for Seed Testing. International Seed Testing Association, Bassersdorf, p 35

    Google Scholar 

  • Jaganathan GK, Song D, Liu W, Han Y, Liu B (2017) Relationship between seed moisture content and acquisition of impermeability in Nelumbo nucifera (Nelumbonaceae). Acta Bot Bras 31:639–644

    Article  Google Scholar 

  • Jaganathan GK, Han Y, Song D, Selvam P, Liu B (2019a) Maternal and burial environment determine the physical dormancy release in tropical Senna auriculata (Fabaceae) seeds. J For Res 30:1343–1351

    Article  CAS  Google Scholar 

  • Jaganathan GK, Li J, Biddick M, Han K, Song D, Yang Y, Han Y, Liu B (2019b) Mechanisms underpinning the onset of seed coat impermeability and dormancy-break in Astragalus adsurgens. Sci Rep 9:96–95

    Article  CAS  Google Scholar 

  • Janská A, Pecková E, Sczepaniak B, Smýkal P, Soukup A (2019) The role of the testa during the establishment of physical dormancy in the pea seed. Ann Bot 123:815–829

    Article  PubMed  CAS  Google Scholar 

  • Jayasuriya KG, Baskin JM, Geneve RL, Baskin CC (2009) A proposed mechanism for physical dormancy break in seeds of Ipomoea lacunose (Convolvulaceae). Ann Bot 103:433–445

    Article  PubMed  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kestring D, Klein J, Menezes LCCRD, Rossi MN (2009) Imbibition phases and germination response of Mimosa bimucronata (Fabaceae: Mimosoideae) to water submersion. Aquat Bot 91:105–109

    Article  Google Scholar 

  • Li R, Li ZC, Chen SS, Yu J, Wang HZ, Zhang XL (2009) Study of water absorption of mung beans based on low-field nuclear magnetic resonance technology. Food Sci 30:137–141

    Google Scholar 

  • López BP, Junco BAR, Ramirez AR, Ledezma JA, Sevilla HFM (2009) Escarificación y dispersión por ovinos de semillas de Guazuma ulmifolia Lam. Rev Verd 4:93–100

    Google Scholar 

  • Ma F, Cholewa E, Mohamed T, Peterson CA, Guzen M (2004) Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann Bot 94:213–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín G, Suárez B, Labrada A, Méndez M, Pérez S (1991) Estudio de la escarificación de las semillas sobre la radiosensibilidad en Teramnus labialis cv Semilla Clara. Past Forr 14:151–155

    Google Scholar 

  • Matías C, Ruz V (1991) Determinación del potencial y calidad de la semilla de leguminosas promisorias. Past Forr 14. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=1243

  • Mazorra-Calero CA, Fontes-Marrero D, Donis-García LH, Martínez-Melo J, Acosta-Fernández Y, Espinosa-Alemán I, Lavinge C, Fernandes P, González-Morales A (2016) Diagnóstico tecnológico y socioeconómico del establecimiento de Psidium guajava L. y Teramnus labialis en Ciego de Ávila. Cuba Past Forr 39:259–264

    Google Scholar 

  • Méndez N, Merazo P, Montaño M (2008) Relación entre la tasa de imbibición y el porcentaje de germinación en semillas de maíz (Zea mays L.), caraota (Phaseoulus vulgaris L.) y quinchoncho (Cajanum cajan (L.) Mill.). Rev UDO 8:61

    Google Scholar 

  • Mira S, Schnadelbach A, Correa EC, Pérez-García F, González-Benito ME (2017) Variability of physical dormancy in relation to seed mechanical properties of three legume species. Seed Sci Technol 45:540–556

    Google Scholar 

  • Nakamura AT, Oliveira DMT (2005) Morfoanatomia e ontogênese da sâmara de Pterocarpus violaceus Vogel (Fabaceae: Faboideae). Rev Brasil Bot 28:375–387

    Google Scholar 

  • Navarro M, Febles G, Torres V (2016) Effects of scarification and storage on vigor expression of Albizia lebbeck (L.) Benth seeds. Rev Cub Cienc Agr 50:465–478

    Google Scholar 

  • Omar Varela R, Albornoz PL (2013) Morpho-anatomy, imbibition, viability and germination of the seed of Anadenanthera colubrina var. cebil (Fabaceae). Rev Biol Trop 61:1109–1118

    Google Scholar 

  • Pabon Garces GJ, Rodés R, Pérez L, Del Rocío Vásquez Hernández L, Ortega E (2018) Estudio comparativo de germinación de semillas de totora provenientes de tres lagos norte-andinos de Ecuador. Cuban J Biol Sci 6(3):1–12

  • Pallavi H, Vishwanath K, Harish B, Prashanth Y, Manjunath T (2014) Seed treatments to break seed dormancy and standardization of viability test procedure in Abrus precatorious. J Med Plant Res 8:229–236

    Article  Google Scholar 

  • Qutob D, Ma F, Peterson CA, Bernards MA, Gijzen M (2008) Structural and permeability properties of the soybean seed coat. Botany 86:219–227

    Article  Google Scholar 

  • Rao NK, Hanson J, Dulloo ME, Ghosh K (2007) Manual para el Manejo de Semillas en Bancos de germoplasma. Bioversity International, Rome

    Google Scholar 

  • Reed B (2008) Plant cryopreservation: a practical guide. Springer, New York

    Book  Google Scholar 

  • Reino J, Sánchez JA, Muñoz B, González Y (2011) Efecto combinado de la escarificación y la temperatura en la germinación de semillas de leguminosas herbáceas. Past Forr 34:179–184

    Google Scholar 

  • Renzi JP, Chantre GR, Cantamutto MA (2016) Effect of water availability and seed source on physical dormancy break of Vicia villosa ssp. Villosa Seed Sci Res 26:254–263

    Article  Google Scholar 

  • Richard GA, Zabala JM, Cerino MC, Marinoni L, Beutel ME, Pensiero JF (2018) Variability in hardseededness and seed coat thickness of three populations of Desmanthus virgatus (Fabaceae, Mimosoideae). Grass For Sci 73:938–946

    Article  Google Scholar 

  • Rodrigues-Junior AG, Faria JMR, Vaz TA, Nakamura AT, José AC (2014) Physical dormancy in Senna multijuga (Fabaceae: Caesalpinioideae) seeds: the role of seed structures in water uptake. Seed Sci Res 24:147–157

    Article  Google Scholar 

  • Schnadelbach A, Veiga-Barbosa L, Ruiz C, Pita J, Pérez-García F (2016) Dormancy breaking and germination of Adenocarpus desertorum, Astragalus gines-lopezii and Hippocrepis grosii (Fabaceae) seeds, three threatened endemic Spanish species. Seed Sci Technol 44:1–14

    Article  Google Scholar 

  • Shao S, Meyer CJ, Ma F, Peterson CA, Bernards MA (2007) The outermost cuticle of soybean seeds: chemical composition and function during imbibition. J Exp Bot 58:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD (2014) The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci 5:351

    PubMed  PubMed Central  Google Scholar 

  • Taylor G (2005) Hardseededness in Mediterranean annual pasture legumes in Australia: a review. Aust J Agr Res 56:645–661

    Article  Google Scholar 

  • Voronkova N, Kholina A (2010) Conservation of endemic species from the Russian Far East using seed cryopreservation. Biol Bull 37:496–501

    Article  Google Scholar 

  • Wang H, Chen L, Dai S, Ma Q, Wu Y, Ma Q, Li S (2019) Seed coat anatomy of Cercis chinensis and its relationship to water uptake. Can J Plant Sci. https://doi.org/10.1139/CJPS-2019-0164

    Article  Google Scholar 

  • Wheeler MH (2000) Cryostorage of cottonseed with liquid nitrogen. Seed Sci Technol 28:357–366

    Google Scholar 

  • Wiesner LE, Laufmann JE, Stanwood PC, Wheeler LJ (1994) The effect of liquid nitrogen on alfalfa seed viability, emergence, and broken cotyledons. Assoc Off Seed Anal Soc Commercial Seed Technol (SCST) 18:1–6

    Google Scholar 

  • Yildiz Tiryaki G, Cil A, Tiryaki I (2016) Revealing seed coat colour variation and their possible association with seed yield parameters in common vetch (Vicia sativa L.). Int J Agron 2016:1804108. https://doi.org/10.1155/2016/1804108

  • Zapata RM, Azagra Malo C, Karlin MS (2017) Tratamientos pregerminativos para la ruptura de la dormición en semillas de tres poblaciones de Ramorinoa girolae, leñosa endémica de zonas áridas en Argentina. Bosque 38:237–245

    Article  Google Scholar 

  • Zeng LW, Cocks PS, Kailis SG, Kuo J (2005) The role of fractures and lipids in the seed coat in the loss of hardseededness of six Mediterranean legume species. J Agric Sci 143:43–55

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bioplant Centre, University of Ciego de Avila (Cuba) and the University of the Western Cape (South Africa).

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Lorenzo.

Ethics declarations

Conflict of interests

All Authors declare that they have no conflict of interest.

Consent for publication

All authors agreed to publish this paper.

Additional information

Communicated by M. Lambardi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta, Y., Pérez, L., Escalante, D. et al. Dormancy breaking in Teramnus labialis (L.f.) Spreng seeds through liquid nitrogen exposure is based on the modification of the hilar region, cuticle, and macrosclereid. Acta Physiol Plant 42, 144 (2020). https://doi.org/10.1007/s11738-020-03134-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03134-9

Keywords