Skip to main content
Log in

Effect of lignosulphonates on Vanilla planifolia shoot multiplication, regeneration and metabolism

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Vanilla planifolia (V. planifolia) is a valuable orchidaceous plant, commonly grown for its pods that are used to produce the flavouring vanilla extract. Here, we evaluated the effect of calcium lignosulphonate (Ca-LIGN) and sodium lignosulphonate (Na-LIGN) on multiplication and regeneration of V. planifolia shoot tip culture. In 150 mg L−1 Ca-LIGN medium, the most number of shoots per explant (5.78 ± 0.63) was successfully obtained. Besides, Ca-LIGN also enhanced the shoot bud and primordial formation rate, as seen under scanning electron microscopy. In contrast, medium containing 150 mg L−1 Na-LIGN recorded the highest average of shoot length (4.72 ± 0.30 cm). Meanwhile, the best growth of root length (1.8 ± 0.32 cm) and root induction (96.67 ± 5.16%) were recorded on the explants treated with 150 mg L−1 Na-LIGN rooting medium. All rooted plantlets successfully acclimatized in the greenhouse (100.00% survival rate). Further biochemical analysis revealed that Ca-LIGN increased the total protein, chlorophyll, sugar, flavonoid and phenolic contents of V. planifolia. Notably, expression of both ribulose-1,5-bisphosphate carboxylase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) genes were also elevated under the treatment of Ca-LIGN, implying a positive role in the photosynthetic process. Taken together, LIGN being an environmental friendly product could be used to enhance the growth and micropropagation of V. planifolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

BAP:

6-Benzylaminopurine

LIGN:

Lignosulphonate

MS:

Murashige and Skoog

NAA:

Naphthaleneacetic acid

V. planifolia :

Vanilla planifolia

References

  • Abebe Z, Mengesha A, Teressa A, Tefera W (2009) Efficient in vitro multiplication protocol for Vanilla planifolia using nodal explants in Ethiopia. Afr J Biotechnol 8:6817–6821

    CAS  Google Scholar 

  • Almas AR, Afanou A, Krogstad T (2014) Impact of lignosulfonate on solution chemistry and phospholipid fatty acid composition in soils. Pedosphere 24:308–321

    Google Scholar 

  • Atanassova M, Georgieva S, Ivancheva K (2011) Total phenolic and total flavanoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J Univ Chem Technol Metall 46:81–88

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Carrasco J, Kovács K, Czech V, Fodor F, Lucena JJ, Vértes A, Hernández-Apaolaza L (2012) Influence of pH, iron source, and Fe/ligand ratio on iron speciation in lignosulfonate complexes studied using Mössbauer spectroscopy. Implications on their fertilizer properties. J Agric Food Chem 60:3331–3340

    CAS  PubMed  Google Scholar 

  • Chitra R, Arulozhiyan R, Jawaharlal M, Vadivel E (2007) Micropropagation of vanilla (Vanilla planifolia Andrews). J Plant Crops 35:111–113

    Google Scholar 

  • Chew YC, Abdul Halim MH, Wan Abdullah WMAN, Ong-Abdullah J, Lai KS (2018) Highly efficient proliferation and regeneration of protocorm-like bodies of the threatened endemic orchid: Phalaenopsis bellina. Sains Malays 47:1093–1099

    CAS  Google Scholar 

  • Cieschi MT, Benedicto A, Hernández-Apaolaza L, Lucena JJ (2016) EDTA shuttle effect vs. lignosulfonate direct effect providing Zn to Navy Bean plants (Phaseolus vulgaris L ‘Negro Polo’) in a calcareous soil. Front Plant Sci 7:1767

    PubMed  PubMed Central  Google Scholar 

  • Docquier S, Kevers C, Lambe P, Gaspar T, Dommes J (2007) Beneficial use of lignosulfonates in in vitro plant cultures: stimulation of growth, of multiplication and of rooting. Plant Cell Tissue Organ Cult 90:285–291

    CAS  Google Scholar 

  • Ducat DC, Silver PA (2012) Improving carbon fixation pathways. Curr Opin Chem Biol 16:337–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ertani A, Francioso O, Tugnili V, Righi V, Nardi S (2011) Effect of commercial lignosulfonate-humate on Zea mays l. metabolism. J Agri Food Chem 59:11940–11948

    CAS  Google Scholar 

  • Furumoto T, Izui K, Quinn V, Furbank RT, von Caemmerer S (2007) Phosphorylation of phosphoenolpyruvate carboxylase is not essential for high photosynthetic rates in the C4 species Flaveria bidentis. Plant Physiol 144:1936–1945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gantait S, Kundu S (2007) In vitro biotechnological approaches on Vanilla planifolia Andrews: advancements and opportunities. Acta Physiol Plant 39:196

    Google Scholar 

  • Gantait S, Mandal N, Bhattacharyya S, Das PK, Nandy S (2009) Mass multiplication of Vanilla planifolia with pure genetic identity confirmed by ISSR. Int J Dev Biol 3:18–23

    Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) Plant hormones and plant growth regulators in plant tissue culture. Vitro Cell Dev Biol Plant 32:272–289

    CAS  Google Scholar 

  • George PS, Ravishankar GA (1997) In vitro multiplication of Vanilla planifolia using axillary bud explants. Plant Cell Rep 16:490–494

    CAS  PubMed  Google Scholar 

  • Giridhar P, Obul B, Ravishankar GA (2001) Silver nitrate influences in vitro shoot multiplication and root formation in Vanilla planifolia. Andr Curr Sci 81:1166–1170

    CAS  Google Scholar 

  • Giridhar P, Ravishankar GA (2004) Efficient micropropagation of Vanilla planifolia Andrews under influence of thidiazuron, zeatin and coconut milk. Indian J Biotechnol 3:113–118

    CAS  Google Scholar 

  • Greule M, Tumino L, Kronewald T, Hener U, Schleucher J, Mosandl A, Keppler F (2010) Improved rapid authentication of vanillin using δ13C and δ2 H values. Eur Food Res Technol 231:933–941

    CAS  Google Scholar 

  • Hamid N, Jawaid F (2009) Effect of short-term exposure of two different concentrations of sulphur dioxide and nitrogen dioxide mixture on some biochemical parameter on soybean (Glycine max (L.) merr.). Pak J Bot 41:2223–2228

    CAS  Google Scholar 

  • Hausman JF, Kevers C, Gaspar T (1995) Auxin-polyamine interaction in the control of the rooting inductive phase of poplar shoots in vitro. Plant Sci 110:63–71

    CAS  Google Scholar 

  • Hochmal AK, Schulze S, Trompelt K, Hippler M (2015) Calcium-dependent regulation of photosynthesis. Biochim Biophys Acta 1847:993–1003

    CAS  PubMed  Google Scholar 

  • Janarthanam B, Sheshadri S (2008) Plantlet regeneration from leaf derived callus of Vanilla planifolia Andrews. Vitro Cell Dev Biol Plant 44:84–89

    CAS  Google Scholar 

  • Kevers C, Soteras G, Baccou JC, Gaspar T (1999) Lignosulfonates: novel promoting additives for plant tissue cultures. Vitro Cell Dev Biol Plant 35:413–416

    CAS  Google Scholar 

  • Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 516:509–6515

    Google Scholar 

  • Lai KS (2016) Analysis of EXO70C2 expression revealed its specific association with late stages of pollen development. Plant Cell Tissue Organ Cult 124:209–215

    CAS  Google Scholar 

  • Lai KS, Abdullah P, Yusoff K, Mahmood M (2011a) An efficient protocol for particle bombardment-mediated transformation of Centella asiatica callus. Acta Physiol Plant 33:2547–2552

    Google Scholar 

  • Lai KS, Yusoff K, Mahmood M (2011b) Extracellular matrix as the early structural marker for Centella asiatica embryogenic tissues. Biol Plant 55:549–553

    CAS  Google Scholar 

  • Li J, Long Y, Qi GN, Li J, Xu ZJ, Wu WH, Wang Y (2014) The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL-CIPK23 complex. Plant Cell 26:3387–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim YY, Lai KS (2017) Generation of transgenic rice expressing cyclotide precursor Oldenlandia affinis kalata B1 protein. J Anim Plant Sci 27:680–684

    Google Scholar 

  • Low LY, Ong-Abdullah J, Wee CY, Lai KS (2019) Effects of lignosulfonates on callus proliferation and shoot induction of recalcitrant indica rice. Sains Malays 48:7–13

    Google Scholar 

  • Mengesha A, Ayenew B, Gebremariam E, Tadesse T (2012) Micropropagation of Vanilla planifolia using enset (Ensete ventricosum (Welw, cheesman)) starch as a gelling agent. Curr Res J Biol Sci 4:519–525

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Orlova I, Marshall-Colón A, Schnepp J, Wood B, Varbanova M, Fridman E, Blakeslee JJ, Peer WA, Murphy AS, Rhodes D, Pichersky E (2006) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 18:3458–3475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavanoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563

    CAS  PubMed  Google Scholar 

  • Phillip JW, Martin RB (2003) Calcium in plants. Ann Bot 92:487–511

    Google Scholar 

  • Pinaria AG, Liew EC, Burgess LW (2010) Fusarium species associated with vanilla stem rot in Indonesia. Australas Plant Path 39:176–183

    Google Scholar 

  • Prajapati K, Modi HA (2012) The importance of potassium in plant growth—a review. Indian J Plant Sci 1:177–186

    Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. Vitro Cell Dev Biol Plant 52:154

    Google Scholar 

  • Ramos-Castellá A, Iglesias-Andreu LG, Bello-Bello J, Lee-Espinosa H (2014) Improved propagation of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Vitro Cell Dev Biol Plant 50:576–581

    Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:44–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soteras G (1994) Mode d'action des lignosulfonates de fer chez les végétaux. Isolement de la molécule active. Dissertation, University de Montpellier

  • Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang CF, Lynn D, Dow JM, Roberts K, Martin C (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10:1801–1816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan BC, Chin CF, Alderson P (2013) Effects of sodium nitroprusside on shoot multiplication and regeneration of Vanilla planifolia Andrews. Vitro Cell Dev Biol Plant 49:626–630

    CAS  Google Scholar 

  • Tan BC, Chin CF, Alderson P (2012) An improved plant regeneration of Vanilla planifolia Andrews. Plant Tissue Cult Biotechnol 21:27–33

    Google Scholar 

  • Torres-González MJ, Aguirre-Medina JF, Iracheta-Donjuan L (2011) Germinación de semillas y obtención de plántulas de Vanilla planifolia Andrews en condiciones in vitro. Agro productividad 4:3–8

    Google Scholar 

  • Yamashita TT, Thomas T (1996) Method and composition for promoting and controlling growth of plants. U.S. Patent 5,549,729

  • Yap WS, Lai KS (2017) Biochemical properties of twelve Malaysia rice cultivars in relation to yield potential. Asian J Agric Res 11:137–143

    Google Scholar 

  • Zerihun A, Ayelign M, Alemayehu T, Wondyfraw T (2009) Efficient in vitro multiplication protocol for Vanilla planifolia using nodal explants in Ethiopia. Afr J Biotechnol 8:6817–6821

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical assistance and support provided by members of Floral Biotechnology Laboratory, Universiti Putra Malaysia. The authors would also thank Universiti Putra Malaysia for the funding provided via Putra Grant (GP-IPM/2015/9450800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok-Song Lai.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by M. Capuana.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan Abdullah, W.M.A.N., Low, LY., Mumaiyizah, S.B. et al. Effect of lignosulphonates on Vanilla planifolia shoot multiplication, regeneration and metabolism. Acta Physiol Plant 42, 107 (2020). https://doi.org/10.1007/s11738-020-03099-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03099-9

Keywords

Navigation