Skip to main content
Log in

Comparison of catalase activity in different organs of the potato (Solanum tuberosum L.) cultivars grown under field condition and purification by three-phase partitioning

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Catalase (CAT) (H2O2: H2O2 oxidoreductase; EC 1.11.1.6) is capable of directly dismutating moderately reactive H2O2 into H2O and O2, and is regarded as one of the major enzymatic antioxidants in plants. The CAT isozymes are known to be differentially expressed and regulated. In this study, micropropagated potato plantlets of seven cultivars were grown under field condition with uniform agricultural practices. CAT activities were measured in the crude extracts from different potato organs namely tubers, leaves and stems at different stages of their growth. Relatively higher CAT activity was noticed in the very small actively growing tubers as compared to the other tissues. Cultivar-dependent differences were noticed in terms of the CAT activities which clearly indicated variation with regard to their antioxidative capacities. pH profile, thermostability and storage stability of CAT were examined. A simple and rapid three-phase partitioning (TPP) method worked effectively with regard to purification of CAT from the crude extracts. Both denaturing and non-denaturing PAGE analyses suggested that both the tuber-type and leaf-type CAT are tetrameric in nature and varied in size, possibly referred to the distinct isoforms in potato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  • Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N (2008) Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res 7:3803–3817

    CAS  PubMed  Google Scholar 

  • Beaumont F, Jouve H-M, Gagnon J, Gaillard J, Pelmont J (1990) Purification and properties of a catalase from potato tubers (Solanum tuberosum). Plant Sci 72:19–26

    CAS  Google Scholar 

  • Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    CAS  PubMed  Google Scholar 

  • Boguszewska D, Grudkowska M, Zagdańska B (2010) Drought-responsive antioxidant enzymes in potato (Solanum tuberosum L.). Pot Res 53:373–382

    CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, Rycke RD, Botterman J, Sybesma C, Montagu MV, Inzé D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  • Demagante AL, Vander Zaag P (1988) The response of potato (Solanum spp.) to photoperiod and light intensity under high temperatures. Pot Res 31:73–83

    Google Scholar 

  • Dennison C, Lovrien R (1997) Three phase partitioning: concentration and purification of proteins. Protein Expres Purif 11:149–161

    CAS  Google Scholar 

  • Du Y-Y, Wang P-C, Chen J, Song C-P (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50:1318–1326

    CAS  PubMed  Google Scholar 

  • Duman YA, Kaya E (2013) Three-phase partitioning as a rapid and easy method for the purification and recovery of catalase from sweet potato tubers (Solanum tuberosum). Appl Biochem Biotechnol 170:1119–1126

    CAS  PubMed  Google Scholar 

  • El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM (2014) Genotype x environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci 19:390–398

    CAS  PubMed  Google Scholar 

  • Fahnenstich H, Scarpeci TE, Valle EM, Flügge U-I, Maurino VG (2008) Generation of hydrogen peroxide in chloroplasts of Arabidopsis overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol 148:719–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Guan L, Scandalios JG (1996) Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases. J Mol Evol 42:570–579

    CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Yang Y, Jiang L, Liu S (2016) The catalase gene family in cucumber: genome-wide identification and organization. Genet Mol Biol 39:408–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandukuri SS, Noor A, Ranjini SS, Vijayalakshmi MA (2012) Purification and characterization of catalase from sprouted black gram (Vigna mungo) seeds. J Chromatogr B 889–890:50–54

    Google Scholar 

  • Kawakami S, Mizuno M, Tsuchida H (2000) Comparison of antioxidant enzyme activities between Solanum tuberosum L. cultivars Danshaku and Kitaakari during low-temperature storage. J Agric Food Chem 48:2117–2121

    CAS  PubMed  Google Scholar 

  • Kiss É, Szamos J, Tamás B, Borbás R (1998) Interfacial behavior of proteins in three-phase partitioning using salt-containing water/tert-butanol systems. Colloids Surf A Physicochem Eng Aspects 142:295–302

    CAS  Google Scholar 

  • Klotz MG, Loewen PC (2003) The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota. Mol Biol Evol 20:1098–1112

    CAS  PubMed  Google Scholar 

  • Kumar V, Luthra SK, Bhardwaj V, Singh BP (2014) Indian potato varieties and their salient features. CPRI Technical Bulletin No. 78 (revised), ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Ann Bot 89:871–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Breusegem FV, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Expt Bot 61:4197–4220

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    CAS  PubMed  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2000) Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol 41:311–320

    CAS  PubMed  Google Scholar 

  • Özer B, Akardere E, Çelem EB, Önal S (2010) Three-phase partitioning as a rapid and efficient method for purification of invertase from tomato. Biochem Eng J 50:110–115

    Google Scholar 

  • Rahnama H, Ebrahimzadeh H (2005) The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biol Plantarum 49:93–97

    CAS  Google Scholar 

  • Rojas-Beltran JA, Dejaeghere F, Abd Alla Kotb M, Du Jardin P (2000) Expression and activity of antioxidant enzymes during potato tuber dormancy. Pot Res 43:383–393

    CAS  Google Scholar 

  • Romero AP, Alarcón A, Valbuena RI, Galeano CH (2017) Physiological assessment of water stress in potato using spectral information. Front Plant Sci 8:1608

    PubMed  PubMed Central  Google Scholar 

  • Sarkar D (2008) The signal transduction pathways controlling in planta tuberization in potato: an emerging synthesis. Plant Cell Rep 27:1–8

    CAS  PubMed  Google Scholar 

  • Saxena L, Iyer BK, Ananthanarayan L (2007) Three phase partitioning as a novel method for purification of ragi (Eleusine coracana) bifunctional amylase/protease inhibitor. Process Biochem 42:491–495

    CAS  Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gene structure, properties, regulation, and expression. In: Scandalios JG (ed), Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Liboratory Press pp 343–406

  • Schägger H, Jagow GV (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    PubMed  Google Scholar 

  • Spychalla JP, Desborough SL (1990) Superoxide dismutase, catalase, and α-tocopherol content of stored potato tubers. Plant Physiol 94:1214–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Guo J, Ling H, Chen S, Wang S, Xu L, Allan AC, Que Y (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS ONE 9:e84426. https://doi.org/10.1371/journal.pone.0084426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KH, Lovrien R (1972) Enzymology in aqueous-organic cosolvent binary mixtures. J Biol Chem 247:3278–3285

    CAS  PubMed  Google Scholar 

  • Willekens H, Langebartels C, Tire C, Montagu MV, Inzé D, Camp WV (1994) Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proc Natl Acad Sci USA 91:10450–10454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Montagu MV, Inzé D, Camp WV (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J 16:4806–4816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J-K, Wang Y-Y, Qiu W-Y, Ma H, Wang Z-B, Wu J-Y (2017) Three-phase partitioning as an elegant and versatile platform applied to non-chromatographic bioseparation processes. Crit Rev Food Sci Nutri. https://doi.org/10.1080/10408398.2017.1327418

    Article  Google Scholar 

  • Zamocky M, Furtmüller PG, Obinger C (2008) Evolution of catalases from bacteria to humans. Antioxid Redox Signal 10:1527–1548

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gracefully thank UGC, Government of India, for providing UGC:MAN Fellowship to G. Kaur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Das.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Human and animal rights statement

This study did not involve human participants and/or animals.

Additional information

Communicated by P. Wojtaszek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (TIF 2025 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Sharma, S. & Das, N. Comparison of catalase activity in different organs of the potato (Solanum tuberosum L.) cultivars grown under field condition and purification by three-phase partitioning . Acta Physiol Plant 42, 10 (2020). https://doi.org/10.1007/s11738-019-3002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-3002-y

Keywords

Navigation