Skip to main content

Novel antimicrobial and antioxidative activity by endophytic Penicillium roqueforti and Trichoderma reesei isolated from Solanum surattense

Abstract

Crop protection against phyto-pathogens has become a global challenge that can be tackled efficiently through natural resources, including endophytic fungi. Endophytes serve as a reservoir for the vast array of potent bioactive metabolites. We investigated the antioxidant and antibacterial potency of endophytes from the roots of Solanum surattense. The non-polar fraction of the cultural filtrate from the isolated strains was tried for antibacterial potency through agar plate diffusion assay. Among the isolated strains, Penicillium roqueforti (CGF-1) and Trichoderma reesei (CGF-11) had broad-spectrum antibacterial activity against phyto-pathogenic bacteria (Xanthomonas oryzae, Pseudomonas syringae, Agrobacterium tumefaciens, and Ralstonia solanacearum). The extracts of CGF-1 and CGF-11 achieved the best result against A. tumefaciens. Similarly, qualitative analysis of the ethyl acetate extracts P. roqueforti and T. reesei exposed the occurrence of alkaloids, flavonoids, phenols, steroids, and tannins. HPLC analysis also confirmed the presence ferulic acid, cinnamic acid, quercetin, and rutin in the non-polar fraction of the cultural filtrate from the isolated strains. The results conclude that P. roqueforti and T. reesei can play an active role against the plant pathogens by secreting the bioactive compounds to protect host plant. Furthermore, the antibacterial and antioxidant potential of the P. roqueforti and T. reesei suggests its use in agriculture and pharmaceutical industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability statement

The 1TS rDNA sequence was submitted to NCBI GenBank and was assigned Accession No. KY173360 for CGF-1 and KY100257.1 for CGF-11. All other data are included in the manuscript.

References

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Bhardwaj A, Sharma D, Jadon N, Agrawal P (2015) Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of Pinus roxburghii. Arch Clin Microbiol 6:1–9

    Google Scholar 

  • Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655

    Article  CAS  Google Scholar 

  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 1:92

    Google Scholar 

  • Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715

    Article  Google Scholar 

  • Devi NN, Shankar D, Sutha S (2012) Biomimetic synthesis of silver nanoparticles from an endophytic fungus and their antimicrobial efficacy. Int J Biomed Adv Res 3:409–415

    Article  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5:537–561

    Article  CAS  Google Scholar 

  • Hamayun M et al (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686. https://doi.org/10.3389/fmicb.2017.00686

    Article  PubMed  PubMed Central  Google Scholar 

  • Haraguchi H, Kataoka S, Okamoto S, Hanafi M, Shibata K (1999) Antimicrobial triterpenes from Ilex integra and the mechanism of antifungal action. Phytother Res Int J Devot Pharmacol Toxicol Eval Nat Prod Deriv 13:151–156

    CAS  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  Google Scholar 

  • Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A (2015) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 6:46

    Article  Google Scholar 

  • Hussain A et al (2018) Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere 211:653–663. https://doi.org/10.1016/j.chemosphere.2018.07.197

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa T, Date M, Ishikura T, Ozaki A (1971) Improvement of kasugamycin-producing strain by the agar piece method and the prototroph method. Folia Microbiol 16:218–224

    Article  CAS  Google Scholar 

  • Ikram M, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, Hamayun M (2018) IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PloS One 13:e0208150. https://doi.org/10.1371/journal.pone.0208150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal M et al (2014) Antimicrobial, cytotoxic and phytotoxic potency of ethyl acetate extract of Rhizopus stolonifer culture. Trop J Pharmaceut Res 13:87–92

    Article  Google Scholar 

  • Ismail Hamayun M, Hussain A, Iqbal A, Khan SA, Lee I-J (2018) Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. BioMed Res Int. https://doi.org/10.1155/2018/7696831

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaber LR, Ownley BH (2017) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control

  • Jan FG, Hamayun M, Hussain A, Jan G, Iqbal A, Khan A, Lee I-J (2019) An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol 19:3. https://doi.org/10.1186/s12866-018-1374-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Johann S, Rosa LH, Rosa CA, Perez P, Cisalpino PS, Zani CL, Cota BB (2012) Antifungal activity of altenusin isolated from the endophytic fungus Alternaria sp. against the pathogenic fungus Paracoccidioides brasiliensis. Revista iberoamericana de micologia 29:205–209

    Article  Google Scholar 

  • Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11:487–505

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Hamayun M, Al-Harrasi A, Al-Rawahi A, Lee I-J (2013a) Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiol 13:51

    Article  CAS  Google Scholar 

  • Khan GJ, Omer MO, Ashraf M, Rehman HU, Khan ZUD (2013b) Effect of Punica granatum (pomegranate) fruit extract on angiogenesis. J App Pharm 4:764–780

    Google Scholar 

  • Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I-J (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  Google Scholar 

  • Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87

    Article  CAS  Google Scholar 

  • Laghari AQ, Memon S, Nelofar A, Laghari AH (2011) Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of cassia angustifolia. Am J Anal Chem 2:871

    Article  CAS  Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  Google Scholar 

  • Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2018) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 1:1–11. https://doi.org/10.1007/s13199-018-0583-y

    Article  CAS  Google Scholar 

  • Mehmood A et al (2019) Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root. Plant Physiol Biochem 135:61–68. https://doi.org/10.1016/j.plaphy.2018.11.029

    Article  CAS  PubMed  Google Scholar 

  • Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65

    Article  Google Scholar 

  • Nagamani A, Kunwar IK, Manoharachary C (2006) Handbook of soil fungi. IK international

  • Nieto-Jacobo MF et al (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci 8:102

    Article  Google Scholar 

  • Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microbial Pathog 82:50–59

    Article  CAS  Google Scholar 

  • Passari AK et al (2017) Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 7:11809

    Article  Google Scholar 

  • Petrini O, Fisher P (1988) A comparative study of fungal endophytes in xylem and whole stem of Pinus sylvestris and Fagus sylvatica. Trans Br Mycol Soc 91:233–238

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Ann Rev Phytopathol 49:5

    Article  Google Scholar 

  • Porte D (2017) Interactive effect of rhizosphere bacterial consortia on performance of Chickpea. Indira Gandhi Krishi Vishwavidhyalaya, Raipur

    Google Scholar 

  • Portillo A, Vila R, Freixa B, Adzet T, Cañigueral S (2001) Antifungal activity of Paraguayan plants used in traditional medicine. J Ethnopharmacol 76:93–98

    Article  CAS  Google Scholar 

  • Qin S et al (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna. Chin Appl Environ Microbiol 75:6176–6186

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Radji M, Sumiati A, Rachmayani R, Elya B (2011) Isolation of fungal endophytes from Garcinia mangostana and their antibacterial activity. Afr J Biotech 10:103–107

    Google Scholar 

  • Ravensberg WJ (2015) Commercialisation of microbes: present situation and future prospects. Principles of plant-microbe interactions. Springer, Berlin, pp 309–317

    Google Scholar 

  • Santos IPD, Silva LCND, Silva MVD, Araújo JMD, Cavalcanti MDS, Lima VLDM (2015) Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Front Microbiol 6:350

    Article  Google Scholar 

  • Sashikumar J, Remya M, Janardhanan K (2003) Antimicrobial activity of ethno medicinal plants of Nilgiri biosphere reserve and Western Ghats. Asian J Microbiol Biotechnol Environ Sci 5:183–185

    Google Scholar 

  • Savary S, Ficke A, Aubertot J-N, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Springer, Berlin

    Book  Google Scholar 

  • Waqas M, Khan AL, Hamayun M, Shahzad R, Kang S-M, Kim J-G, Lee I-J (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287

    Article  CAS  Google Scholar 

  • Yadav M, Yadav A, Yadav JP (2014) vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam Asian Pac. J Trop Med 7:S256–S261

    Google Scholar 

  • Zhao K et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau. China Curr Microbiol 62:182–190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work was supported by the Department of Botany, Abdul Wali Khan University Mardan. The authors are also thankful to PCSIR and NARC for providing the pathogens for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Iqbal.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethics approval and consent to participate

Our study does not involve any human, animal, or endangered species.

Consent for publication

No consent/approval at the national or international level or appropriate permissions and/or licenses for the study were required.

Additional information

Communicated by M. J. Reigosa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 638 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ikram, M., Ali, N., Jan, G. et al. Novel antimicrobial and antioxidative activity by endophytic Penicillium roqueforti and Trichoderma reesei isolated from Solanum surattense. Acta Physiol Plant 41, 164 (2019). https://doi.org/10.1007/s11738-019-2957-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2957-z

Keywords

  • Endophytic fungi
  • 18S rDNA
  • Antimicrobial activity
  • MIC/MBC
  • Antioxidant compounds