Skip to main content

Advertisement

Log in

TCP family genes control leaf development and its responses to gibberellin in celery

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Celery is a biennial herb of the Apiaceae family and is a leafy vegetable crop widely cultivated worldwide. TCP (teosinte branched1/cycloidea/proliferating cell factors), a transcription factor family, is involved in cell growth and leaf tissue proliferation. In this study, 32 AgTCP transcription factors were identified and analyzed based on the celery transcriptome and genome database and divided into two classes. Analysis of structural feature, phylogenetic tree, interaction network, and subcellular localization of AgTCP proteins was performed. It is shown that the AgTCP2 protein was positioned in the nucleus, and TCP proteins in the same group had higher similarity. Heatmap clusters of AgTCP genes expression levels during different celery leaf developmental stages suggested that the genes from the same evolutionary branch tended to form a cluster. The expression profiles of four AgTCP genes were detected at celery leaf developmental stages and under gibberellin (GA3) treatment. As a CYC-type gene, AgTCP4 showed significantly increased expression levels under developmental stage and GA3 treatment in ‘Liuhe Huangxinqin’. The results of this work give potential helpful information for further analysis of the role of AgTCP transcription factors in leaf development and hormone regulation in celery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar-Martinez JA, Sinha N (2013) Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front Plant Sci 4:406

    Article  Google Scholar 

  • Balsemão-Pires E, Andrade LR, Sachetto-Martins G (2013) Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiol Biochem 67:120–125

    Article  Google Scholar 

  • Braun N, de Saint Germain A, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C (2012) The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching. Plant Physiol 158(1):225–238

    Article  CAS  Google Scholar 

  • Broholm SK, Tahtiharju S, Laitinen RA, Albert VA, Teeri TH, Elomaa P (2008) A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci USA 105(26):9117–9122

    Article  CAS  Google Scholar 

  • Craig WJ (1999) Health-promoting properties of common herbs. Am J Clin Nutr 70(3 Suppl):491S–499S

    Article  CAS  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (2010) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18(2):215–222

    Article  Google Scholar 

  • Dal Santo S, Vannozzi A, Tornielli GB, Fasoli M, Venturini L, Pezzotti M, Zenoni S (2013) Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics. PLoS One 8(4):e62206

    Article  Google Scholar 

  • Danisman S, van Dijk AD, Bimbo A, van der Wal F, Hennig L, de Folter S, Angenent GC, Immink RG (2013) Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot 64(18):5673–5685

    Article  CAS  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386(6624):485–488

    Article  CAS  Google Scholar 

  • Efroni I, Blum E, Goldshmidt A, Eshed Y (2008) A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20(9):2293–2306

    Article  CAS  Google Scholar 

  • Feng K, Hou XL, Li MY, Jiang Q, Xu ZS, Liu JX, Xiong AS (2018a) CeleryDB: a genomic database for celery. Database (Oxford). https://doi.org/10.1093/database/bay070

    Article  PubMed Central  Google Scholar 

  • Feng K, Liu JX, Duan AQ, Li T, Yang QQ, Xu ZS, Xiong AS (2018b) AgMYB2 transcription factor is involved in the regulation of anthocyanin biosynthesis in purple celery (Apium graveolens L.). Planta 248(5):1249–1261

    Article  CAS  Google Scholar 

  • Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J (2010) TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22(4):1161–1173

    Article  CAS  Google Scholar 

  • Herve C, Dabos P, Bardet C, Jauneau A, Auriac MC, Ramboer A, Lacout F, Tremousaygue D (2009) In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. Plant Physiol 149(3):1462–1477

    Article  CAS  Google Scholar 

  • Horn S, Pabónmora N, Theuß VS, Busch A, Zachgo S (2015) Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. Plant J 81(4):559–571

    Article  CAS  Google Scholar 

  • Huang T, Irish VF (2015) Temporal control of plant organ growth by TCP transcription factors. Curr Biol 25(13):1765–1770

    Article  CAS  Google Scholar 

  • Jia XL, Wang GL, Xiong F, Yu XR, Xu ZS, Wang F, Xiong AS (2015a) De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development. Sci Rep 5:8259

    Article  CAS  Google Scholar 

  • Jia XL, Li MY, Jiang Q, Xu ZS, Wang F, Xiong AS (2015b) High-throughput sequencing of small RNAs and anatomical characteristics associated with leaf development in celery. Sci Rep 5:11093

    Article  CAS  Google Scholar 

  • Jiang CJ, Imamoto N, Matsuki R, Yoneda Y, Yamamoto N (1998) Functional characterization of a plant importin alpha homologue. Nuclear localization signal (NLS)-selective binding and mediation of nuclear import of nls proteins in vitro. J Bio Chem 273(37):24083–24087

    Article  CAS  Google Scholar 

  • Jones NR, Lazarus P (2014) UGT2B gene expression analysis in multiple tobacco carcinogen-targeted tissues. Drug Metab Dispos 42(4):529–536

    Article  Google Scholar 

  • Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9(9):1607–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30(3):337–348

    Article  CAS  Google Scholar 

  • Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19(2):473–484

    Article  CAS  Google Scholar 

  • Koyama T, Sato F, Ohme-Takagi M (2017) Roles of miR319 and TCP transcription factors in leaf development. Plant Physiol 175(2):874–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  Google Scholar 

  • Li MY, Wang F, Jiang Q, Ma J, Xiong AS (2014) Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Hortic Res 1:10

    Article  Google Scholar 

  • Li MY, Wang F, Jiang Q, Wang GL, Tian C, Xiong AS (2016) Validation and comparison of reference genes for qPCR normalization of celery (Apium graveolens) at different development stages. Front Plant Sci 7:313

    PubMed  PubMed Central  Google Scholar 

  • Li H, Liu ZW, Wu ZJ, Wang YX, Teng RM, Zhuang J (2018a) Differentially expressed protein and gene analysis revealed the effects of temperature on changes in ascorbic acid metabolism in harvested tea leaves. Hortic Res 5:65

    Article  Google Scholar 

  • Li MY, Hou XL, Wang F, Tan GF, Xu ZS, Xiong AS (2018b) Advances in the research of celery, an important Apiaceae vegetable crop. Crit Rev Biotechnol 38(2):172–183

    Article  CAS  Google Scholar 

  • Li C, Qiu J, Huang S, Yin J, Yang G (2019) AaMYB3 interacts with AabHLH1 to regulate proanthocyanidin accumulation in Anthurium andraeanum (Hort.)-another strategy to modulate pigmentation. Hortic Res 6:14

    Article  Google Scholar 

  • Lucero LE, Manavella PA, Gras DE, Ariel FD, Gonzalez DH (2017) Class I and class II TCP transcription factors modulate SOC1-dependent flowering at multiple levels. Mol plant 10(12):1571–1574

    Article  CAS  Google Scholar 

  • Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383(6603):794–799

    Article  CAS  Google Scholar 

  • Martíntrillo M, Cubas P (2010) TCP genes: a family snapshot 10 years later. Trends Plant Sci 15(1):31–39

    Article  Google Scholar 

  • Navaud O, Dabos P, Carnus E, Tremousaygue D, Herve C (2007) TCP transcription factors predate the emergence of land plants. J Mol Evol 65(1):23–33

    Article  CAS  Google Scholar 

  • Olofsson L, Engström A, Lundgren A, Brodelius PE (2011) Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biol 11:45

    Article  CAS  Google Scholar 

  • Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39(6):787–791

    Article  CAS  Google Scholar 

  • Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38(Dasebase issue):D822–D827

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  Google Scholar 

  • Raffo A, Sinesio F, Moneta E, Nardo N, Peparaio M, Paoletti F (2006) Internal quality of fresh and cold stored celery petioles described by sensory profile, chemical and instrumental measurements. Eur Food Res Technol 222(5):590–599

    Article  CAS  Google Scholar 

  • Sun CH, Yu JQ, Duan X, Wang JH, Zhang QY, Gu KD, Hu DG, Zheng CS (2018) The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum. Hortic Res 5:52

    Article  Google Scholar 

  • Suzuki T, Sakurai K, Ueguchi C, Mizuno T (2001) Two types of putative nuclear factors that physically interact with histidine-containing phosphotransfer (Hpt) domains, signaling mediators in His-to-Asp phosphorelay, in Arabidopsis thaliana. Plant Cell Physiol 42(1):37–45

    Article  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452

    Article  CAS  Google Scholar 

  • Tan XL, Fan ZQ, Shan W, Yin XR, Kuang JF, Lu WJ, Chen JY (2018) Association of BrERF72 with methyl jasmonate-induced leaf senescence of Chinese flowering cabbage through activating JA biosynthesis-related genes. Hortic Res 5:22

    Article  Google Scholar 

  • Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E (2010) Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. Plant J 53(1):42–52

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  Google Scholar 

  • Viola IL, Uberti Manassero NG, Ripoll R, Gonzalez DH (2011) The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. Biochem J 435(1):143–155

    Article  CAS  Google Scholar 

  • Wei B, Zhang J, Pang C, Yu H, Guo D, Jiang H, Ding M, Chen Z, Tao Q, Gu H (2015) The molecular mechanism of SPOROCYTELESS/NOZZLE in controlling Arabidopsis ovule development. Cell Res 25(1):121–134

    Article  CAS  Google Scholar 

  • Wu ZJ, Wang WL, Zhuang J (2017) TCP family genes control leaf development and its responses to hormonal stimuli in tea plant [Camellia sinensis (L.) O. Kuntze]. Plant Growth Regul 83:43–53

    Article  CAS  Google Scholar 

  • Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005) Transcription Factors in Rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59(1):191–203

    Article  CAS  Google Scholar 

  • Zhou Y, Zhang D, An J, Yin H, Fang S, Chu J, Zhao Y, Li J (2017) TCP transcription factors regulate shade avoidance via directly mediating the expression of both PHYTOCHROME INTERACTING FACTORs and auxin biosynthetic genes. Plant Physiol 176(2):1850–1861

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by Jiangsu Agricultural Science and Technology Innovation Fund [CX(2018)2007], National Natural Science Foundation of China (31272175), and Priority Academic Program Development of Jiangsu Higher Education Institutions Project (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Sheng Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by J. Huang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, AQ., Wang, YW., Feng, K. et al. TCP family genes control leaf development and its responses to gibberellin in celery. Acta Physiol Plant 41, 153 (2019). https://doi.org/10.1007/s11738-019-2945-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2945-3

Keywords

Navigation