Skip to main content
Log in

Transformation of wheat Triticum aestivum with the HvBADH1 transgene from hulless barley improves salinity-stress tolerance

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Studies have shown that the stress tolerance of cereal plants to osmotic or salinity stresses can be improved to varying degrees by the overexpression of an introduced betaine aldehyde dehydrogenase (BADH) gene. In the present study, the HvBADH1 gene from Hordeum vulgare L. var. nudum Hook. f., encoding a cytosolic BADH, was transferred into Triticum aestivum via traditional Agrobacterium tumefaciens-mediated transformation. Molecular methods, such as PCR, Southern blot analysis, and real-time quantitative RT-PCR were used to identify the successful integration and expression of the HvBADH1 transgene in genetically transformed wheat lines. To detect the efficacy of the HvBADH1 transgene in the transformants, some pivotal physiological indicators that reflected abiotic stress tolerance were measured in individual transgenic plant lines. These indicators included intracellular K+ and Na+ contents or K+/Na+ ratio, relative conductivity, and malondialdehyde and glycine betaine (GB) concentrations in cells. The results revealed that all the tested transgenic lines could significantly increase the recruitments of K+ in their cytosol than the wild-type seedlings. Similarly, 11.59- to 21.82-fold greater accumulation of GB, 2.11–2.56 times higher calli relative growth rates, and 26.2–29.1% seedling survival rates were found in transgenic lines under 150 mM NaCl stressed conditions. Our results demonstrated that by overexpressing the HvBADH1 transgene in genetically transformed wheat, the overall salt tolerance of the target plants was significantly increased, and the damaging effects of high salinity were significantly reduced.

Article Highlights

  • We set up a new Agrobacterium tumefaciens-mediated Triticum aestivum L. transformation method.

  • HvBADH1 was transferred into the genome of Triticum aestivum L.

  • HvBADH1 gene can improve the salt tolerance of transgenic Triticum aestivum L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Battal A, Baloglu MC, Kavas M, Yucel M, Oktem HA (2012) Particle bombardment transformation of some Turkish wheat cultivars with TaNAC69-1 and TtNAMB2 genes. New Biotechnol 29:S173. https://doi.org/10.1016/j.nbt.2012.08.481

    Article  Google Scholar 

  • Chan MT, Chang HH, Ho SL, Tong WF, Yu SM (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol Biol 22:491–506

    Article  CAS  Google Scholar 

  • Chandran P, Potty VP (2008) Induction of hairy roots through the mediation of four strains of Agrobacterium rhizogenes on five host plants. Indian J Biotechnol 7:122–128

    CAS  Google Scholar 

  • Chang YF (1983) Plant regeneration in vitro from leaf tissues derived from cultured immature embryos of Zea mays L. Plant Cell Rep 2:183–185. https://doi.org/10.1007/BF00270098

    Article  CAS  PubMed  Google Scholar 

  • Cheng M et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  CAS  Google Scholar 

  • Deng YS, Kong FY, Zhou B, Zhang S, Yue MM, Meng QW (2014) Heterology expression of the tomato LeLhcb2 gene confers elevated tolerance to chilling stress in transgenic tobacco. Plant Physiol Biochem 80:318–327

    Article  CAS  Google Scholar 

  • Finer KR, Finer JJ (2000) Use of Agrobacterium expressing green fluorescent protein to evaluate colonization of sonication-assisted Agrobacterium-mediated transformation-treated soybean cotyledons. Lett Appl Microbiol 30:406–410

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  Google Scholar 

  • He Y et al (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61:1567–1581. https://doi.org/10.1093/jxb/erq035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X et al (2015) A sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco. Gene 570:239–247. https://doi.org/10.1016/j.gene.2015.06.023

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ishida Y, Komari T (2014) Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front Plant Sci 5:628. https://doi.org/10.3389/fpls.2014.00628

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain Wani SNBS, Haribhushan A, Iqbal Mir J (2013) Compatible solute engineering in plants for abiotic stress tolerance—role of glycine betaine. Curr Genom 14:157–165

    Article  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750. https://doi.org/10.1038/nbt0696-745

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lai P, Li P, Zhao Y (2016) Transformation of Cichorium intybus with the HvBADH1 gene enhanced the salinity tolerance of the transformants. S Afr J Bot 102:110–119. https://doi.org/10.1016/j.sajb.2015.07.009

    Article  CAS  Google Scholar 

  • Martinez SEV (1983) Simultaneous determination of choline and betaine in some fish materials. Analyst 108:1114–1119

    Article  Google Scholar 

  • Mehta R et al (2013) Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation. VirusDisease 24:205–213

    Google Scholar 

  • Metris A, George SM, Mulholland F, Carter AT, Baranyi J (2014) E. coli under salt stress: metabolic shift in the presence of glycine betaine. Appl Environ Microbiol 80:4745–4756

    Article  CAS  Google Scholar 

  • Mitić N, Nikolić R, Ninković S, Miljuš-Djukić J, Nešković M (2004) Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L. Biol Plant 48:179–184

    Article  Google Scholar 

  • Munns R (2002) Munns, R.: Comparative physiology of salt and water stress. Plant Cell Environ. 28, 239-250. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:24. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Nakamura T, Nomura M, Mori H, Jagendorf AT, Ueda A, Takabe T (2001) An isozyme of betaine aldehyde dehydrogenase in barley. Plant Cell Physiol 42:1088–1092

    Article  CAS  Google Scholar 

  • Nguyen T, Thu T, Claeys MG (2007) Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tissue Organ Cult (PCTOC) 91:155–164

    Article  CAS  Google Scholar 

  • Puniran-Hartley N, Hartley J, Shabala L, Shabala S (2014) Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: in planta evidence for cross-tolerance. Plant Physiol Biochem PPB 83:32–39. https://doi.org/10.1016/j.plaphy.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  • Pushpavalli R, Quealy J, Colmer TD, Turner NC, Siddique KHM, Rao MV, Vadez V (2015) Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na + accumulation in leaves. J Agron Crop Sci 202:125–138

    Article  Google Scholar 

  • Sarker RH, Biswas A (2002) In vitro plantlet regeneration and agrobacterium mediated genetic transformation of wheat (Triticum aestivum L.). Plant Tissue Cult Biotechnol 12:155–165

    Google Scholar 

  • Shavrukov Y (2013) Salt stress or salt shock: which genes are we studying? J Exp Bot 64:119–127. https://doi.org/10.1093/jxb/ers316

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa K, Takabe T, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from Spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98:565–571

    Article  CAS  Google Scholar 

  • Shrawat AK, Becker D, LöRz H (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Sci 172:281–290

    Article  CAS  Google Scholar 

  • Tang W et al (2014) RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Mol Biol 86:443–454. https://doi.org/10.1007/s11103-014-0239-0

    Article  CAS  PubMed  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10:667–674

    Article  CAS  Google Scholar 

  • Wang A, Yu Z, Ding Y (2009) Genetic diversity analysis of wild close relatives of barley from Tibet and the Middle East by ISSR and SSR markers. Compt Rendus Biol 332:393–403. https://doi.org/10.1016/j.crvi.2008.11.007

    Article  CAS  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  CAS  Google Scholar 

  • Wang JY, Lai LD, Tong SM, Li QL (2013) Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance. Biochem Biophys Res Commun 432:262–267. https://doi.org/10.1016/j.bbrc.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhao X, Wang B, Liu E, Chen N, Zhang W, Liu H (2016) Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses. Biochem Biophys Res Commun 472:353–359

    Article  CAS  Google Scholar 

  • Watson DJ, Thorne GN, French SAW (1963) Analysis of growth and yield of winter and spring wheats. Ann Bot 27:1–22

    Article  Google Scholar 

  • Wood AJ, Saneoka H, Rhodes D, Joly RJ, Goldsbrough PB (1996) Betaine aldehyde dehydrogenase in sorghum. Molecular cloning and expression of two related genes. Plant Physiol 110:1301–1308

    Article  CAS  Google Scholar 

  • Wu H, Doherty A, Jones HD (2009) Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. Methods Mol Biol 478:93–103. https://doi.org/10.1007/978-1-59745-379-0_5

    Article  CAS  PubMed  Google Scholar 

  • Yang C et al (2015) SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis. Plant Physiol Biochem 96:377–387

    Article  CAS  Google Scholar 

  • Zárate-Romero A, Murillo-Melo Darío S, Mújica-Jiménez C, Montiel C, Muñoz-Clares Rosario A (2016) Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications. Biochem J 473:873–885. https://doi.org/10.1042/bj20151084

    Article  PubMed  Google Scholar 

  • Zhang F, Li X, Lai P, Li P, Zhao Y (2015) Comparison of salt tolerance between Cichorium intybus L. transformed with AtNHX1 or HvBADH1. Acta Physiol Plant 37:8. https://doi.org/10.1007/s11738-014-1755-x

    Article  CAS  Google Scholar 

  • Zheng X et al (2007) The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep 26:1195–1203. https://doi.org/10.1007/s00299-007-0307-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant number: 31470329), the Research Project of Provincial Key Laboratory of Shaanxi (Grant number: 17JS127) and the Research Project of Key Laboratory of Resource Biology and Biotechnology in Western China (Grant no: ZSK2018005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuwei Zhao or Yao Xu.

Ethics declarations

Conflict of interest

All the authors have no conflict of interest to declare.

Human and animal rights

Our study has no research involved human participants or animals.

Additional information

Communicated by Y. Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Cai, J., Luo, X. et al. Transformation of wheat Triticum aestivum with the HvBADH1 transgene from hulless barley improves salinity-stress tolerance. Acta Physiol Plant 41, 155 (2019). https://doi.org/10.1007/s11738-019-2940-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2940-8

Keywords

Navigation