Growth-promoting bioactivities of Bipolaris sp. CSL-1 isolated from Cannabis sativa suggest a distinctive role in modifying host plant phenotypic plasticity and functions

Abstract

Endophytic fungi have been considered as strong plant growth promoters due to phytohormones production. The current study reports the isolation of endophytic fungi from bio-prospective medicinal plant cannabis sativa. Endophytic fungus Bipolaris sp. CSL-1 from the leaves of C. sativa was isolated. Culture filtrate (CF) was primarily investigated for indole-3-acetic acid (IAA) and gibberellins (GAs) and was further evaluated for its capability to enhance mutant Waito-C rice growth attributes. A variety of plant growth characteristics, including seedling length, seedling biomass, and chlorophyll content, were significantly promoted by the CF, and the growth-promoting effect was due to IAA and various GAs in the CF. Gas chromatography/mass spectrometry analysis revealed the quantities (ng/mL) of various GAs, including GA1 (0.758 ± 0.005), GA3 (0.00015 ± 0.005), GA4 (0.945 ± 0.081), GA7 (0.6382 ± 0.012), GA9 (0.0125 ± 0.0002), and GA24 (0.0139 ± 0.0013). Similarly, endogenous GA4 (33.243 ± 4.36), GA24 (29.64 ± 2.68), GA7 (22.5 ± 1.3), and GA12 (25.21 ± 2.8) were significantly upregulated in rice mutant after CF application. Furthermore, RT-PCR indicated that IAA and GA pathway genes (des, ggs2, P50-1, P450-4, and iaaH) were expressed in CSL-1 and the combined application of CSL-1 spore suspension with yucasin and uniconazole to maize seedlings revealed that CSL-1 such as exogenous GA3 and IAA alleviated the negative effect of uniconazole and yucasin and promoted maize-seedling growth. These findings suggest that the endophytic fungus CSL-1, which produces IAA and GAs, can play a vital role in promoting plant growth and that CSL-1 could be used to enhance crop growth and mitigate plant stress under a variety of environmental conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Achard P et al (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    CAS  PubMed  Google Scholar 

  2. Amin N (2013) Diversity of endophytic fungi from root of Maize var. Pulut (waxy corn local variety of South Sulawesi, Indonesia). Int J Curr Microbiol App Sci 2:148–154

    Google Scholar 

  3. Angel SMM, Badillo MGC, Osuna MAI (2011) The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J Microbiol Biotechnol 21:686–696

    Google Scholar 

  4. Asaf S et al (2017) Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J Plant Interact 12:31–38

    CAS  Google Scholar 

  5. Bacon CW, White J (2000) Microbial endophytes. CRC Press, Boca Raton

    Google Scholar 

  6. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  PubMed  Google Scholar 

  7. Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    CAS  PubMed  Google Scholar 

  8. Burden RS et al (1987) Comparative activity of the enantiomers of triadimenol and paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis. Pest Manag Sci 21:253–267

    CAS  Google Scholar 

  9. Chan C-X, Teo S-S, Ho C-L, Othman RY, Phang S-M (2004) Optimisation of RNA extraction from Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol 16:297–301

    CAS  Google Scholar 

  10. Choi W-Y et al (2005) Isolation of gibberellins-producing fungi from the root of several Sesamum indicum plants. J Microbiol Biotechnol 15:22–28

    CAS  Google Scholar 

  11. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    CAS  PubMed  Google Scholar 

  12. Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    CAS  PubMed  Google Scholar 

  13. Eom S-H et al (2007) Far infrared ray irradiation stimulates antioxidant activity in Vitis flexuosa THUNB. Berries Kor J Med Crop Sci 15:319–323

    Google Scholar 

  14. García A, Rhoden SA, Rubin Filho CJ, Nakamura CV, Pamphile JA (2012) Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol Res 45:139–148

    PubMed  Google Scholar 

  15. Gautam AK, Kant M, Thakur Y (2013) Isolation of endophytic fungi from Cannabis sativa and study their antifungal potential. Arch Phytopathol Plant Protect 46:627–635

    Google Scholar 

  16. Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Diversity 47:19–27

    Google Scholar 

  17. Gimenez C, Cabrera R, Reina M, Gonzalez-Coloma A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11:707–720

    CAS  Google Scholar 

  18. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica

  19. Gonai T et al (2004) Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. J Exp Bot 55:111–118

    CAS  PubMed  Google Scholar 

  20. Gond S, Verma V, Mishra A, Kumar A, Kharwar R (2010) 15 Role of Fungal endophytes in plant protection. Manag Fungal Plant Pathogens 183

  21. Grant MR, Jones JD (2009) Hormone (dis) harmony moulds plant health and disease. Science 324:750–752

    CAS  PubMed  Google Scholar 

  22. Guo Y, Zhu C, Gan L, Ng D, Xia K (2015) Effects of exogenous gibberellic acid3 on iron and manganese plaque amounts and iron and manganese uptake in rice. PloS One 10:0118177

    Google Scholar 

  23. Hamayun M et al (2009) Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J Microbiol Biotechnol 25:1785–1792

    CAS  Google Scholar 

  24. Hamayun M et al (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686

    PubMed  PubMed Central  Google Scholar 

  25. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    CAS  PubMed  Google Scholar 

  26. Holbrook AA, Edge W, Bailey F (1961) Spectrophotometric method for determination of gibberellic acid. In. ACS Publications

  27. Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    CAS  PubMed  Google Scholar 

  28. Hou X, Ding L, Yu H (2013) Crosstalk between GA and JA signaling mediates plant growth and defense. Plant Cell Rep 32:1067–1074

    CAS  PubMed  Google Scholar 

  29. Hwang J-S, You Y-H, Bae J-J, Khan SA, Kim J-G, Choo Y-S (2010) Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi. J Coastal Res 27:544–548

    Google Scholar 

  30. Ishida Y, Nakamura A, Mitani Y, Suzuki M, Soeno K, Asami T, Shimada Y (2013) Comparison of indole derivatives as potential intermediates of auxin biosynthesis in Arabidopsis. Plant Biotechnol 30:185–190

    CAS  Google Scholar 

  31. Izumi K, Yamaguchi I, Wada A, Oshio H, Takahashi N (1984) Effects of a new plant growth retardant (E)-1-(4-chlorophenyl)-4, 4-dimethyl-2-(1, 2, 4-triazol-1-yl)-1-penten-3-ol (S-3307) on the growth and gibberellin content of rice plants. Plant Cell Physiol 25:611–617

    CAS  Google Scholar 

  32. Izumi K, Kamiya Y, Sakurai A, Oshio H, Takahashi N (1985) Studies of sites of action of a new plant growth retardant (E)-1-(4-chlorophenyl)-4, 4-dimethyl-2-(1, 2, 4-triazol-1-yl)-1-penten-3-ol (S-3307) and comparative effects of its stereoisomers in a cell-free system from Cucurbita maxima. Plant Cell Physiol 26:821–827

    CAS  Google Scholar 

  33. Jeon YH, Chang S-P, Hwang I, Kim Y-H (2003) Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J Microbiol Biotechnol 13:881–891

    Google Scholar 

  34. Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98

    CAS  PubMed  Google Scholar 

  35. Jung JH, Shin DM, Bae WC, Hong SK, Suh JW, Koo SH, Jeong BC (2002) Identification of FM001 as plant growth-promoting substance from Acremonium strictum MJN1 culture. J Microbiol Biotechnol 12:327–330

    CAS  Google Scholar 

  36. Kakei Y et al (2015) Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. Plant J 84:827–837

    CAS  PubMed  Google Scholar 

  37. Kang S-M et al (2015) Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. Eur J Soil Biol 68:85–93

    CAS  Google Scholar 

  38. Karakoc SB, Aksoez N (2004) Optimization of carbon-nitrogen ratio for production of gibberellic acid by Pseudomonas sp. Pol J Microbiol 53:117–120

    CAS  Google Scholar 

  39. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawaide H, Sassa T (1993) Accumulation of gibberellin A1 and the metabolism of gibberellin A9 to gibberellin A1 in a Phaeosphaeria sp. L487 culture. Biosci, Biotechnol, Biochem 57:1403–1405

    CAS  Google Scholar 

  41. Khan SA et al (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231

    PubMed  PubMed Central  Google Scholar 

  42. Khan SA et al (2009) A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotech Lett 31:283–287

    CAS  Google Scholar 

  43. Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee I-J (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861

    CAS  PubMed  Google Scholar 

  44. Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I-J (2015a) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74

    CAS  PubMed  Google Scholar 

  46. Khan AL, Waqas M, Hussain J, Al-Harrasi A, Hamayun M, Lee I-J (2015b) Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: an examples of Penicillium janthinellum LK5 and comparison with exogenous GA 3. J Haz Mater 295:70–78

    CAS  Google Scholar 

  47. Khan AL et al (2016) Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207. https://doi.org/10.1371/journal.pone.0158207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Khan AL et al (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    CAS  Google Scholar 

  49. Kharwar RN, Verma VC, Strobel G, Ezra D (2008) The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci 25:228–233

    Google Scholar 

  50. Kumla J, Suwannarach N, Bussaban B, Matsui K, Lumyong S (2014) Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from northern Thailand. Ann Microbiol 64:707–720

    CAS  Google Scholar 

  51. Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    CAS  PubMed  Google Scholar 

  52. Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Metabolomics. InTech

  53. Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 60:137–151

    Google Scholar 

  54. Lange T (1998) Molecular biology of gibberellin synthesis. Planta 204:409–419

    CAS  PubMed  Google Scholar 

  55. Lee I-J, Foster KR, Morgan PW (1998) Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol 116:1003–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li H-Y, Shen M, Zhou Z-P, Li T, Y-l Wei, L-b Lin (2012a) Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain. Southwest China Fungal Divers 54:79–86

    Google Scholar 

  57. Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012b) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Google Scholar 

  58. Lister E, Wilson P (2001) Measurement of total phenolics and ABTS assay for antioxidant activity (personal communication). Crop Research Institute, Lincoln, pp 235–239

    Google Scholar 

  59. Lubna et al (2018) Salt tolerance of Glycine max L. induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem: PPB 128:13–23. https://doi.org/10.1016/j.plaphy.2018.05.007

    CAS  Article  PubMed  Google Scholar 

  60. Luo Z-B et al (2011) The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environ Exp Bot 72:304–311

    CAS  Google Scholar 

  61. Ma J, Wang R, Li X, Gao B, Chen S (2016) Transcriptome and gene expression analysis of cylas formicarius (Coleoptera: Brentidae) during different development stages. J Insect Sci. https://doi.org/10.1093/jisesa/iew053

    Article  PubMed  PubMed Central  Google Scholar 

  62. Magome H et al (2013) CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci 110:1947–1952

    CAS  PubMed  Google Scholar 

  63. Mander LN (2003) Twenty years of gibberellin research. Nat Prod Rep 20:49–69

    CAS  PubMed  Google Scholar 

  64. Mandyam KG, Roe J, Jumpponen A (2013) Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biol 117:250–260

    PubMed  Google Scholar 

  65. Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117

    PubMed  Google Scholar 

  66. Matsukura C, Itoh S-I, Nemoto K, Tanimoto E, Yamaguchi J (1998) Promotion of leaf sheath growth by gibberellic acid in a dwarf mutant of rice. Planta 205:145–152

    CAS  Google Scholar 

  67. Matsuoka K, Furukawa J, Bidadi H, Asahina M, Yamaguchi S, Satoh S (2013) Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis. Plant Cell Physiol 55:87–98

    PubMed  Google Scholar 

  68. McCloud ES, Baldwin IT (1997) Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430–435

    CAS  Google Scholar 

  69. Millar AA et al (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J 45:942–954

    CAS  PubMed  Google Scholar 

  70. Murase K, Hirano Y, Sun T-P, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459

    CAS  PubMed  Google Scholar 

  71. Murphy BR, Doohan FM, Hodkinson TR (2014) Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis 62:29–39

    Google Scholar 

  72. Nalini MS, Sunayana N, Prakash HS (2014) Endophytic fungal diversity in medicinal plants of Western Ghats, India International Journal of Biodiversity 2014

  73. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    CAS  PubMed  Google Scholar 

  74. Nishijima T, Koshioka M, Yamaji H (1992) Nondwarf rice seedling bioassay for gibberellins. Plant Physiol 98:962–965

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nishimura T et al (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77:352–366

    CAS  PubMed  Google Scholar 

  76. Okamoto M et al (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62:39–51

    CAS  PubMed  Google Scholar 

  77. Olszewski N, Sun T-P, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pandey R, Mishra AK, Tiwari S, Singh H, Kalra A (2011) Enhanced tolerance of Mentha arvensis against Meloidogyne incognita (Kofoid and White) Chitwood through mutualistic endophytes and PGPRs. J Plant Interact 6:247–253

    Google Scholar 

  79. Plett JM et al (2014) Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc Natl Acad Sci 111:8299–8304

    CAS  PubMed  Google Scholar 

  80. Qi Q, Rose PA, Abrams GD, Taylor DC, Abrams SR, Cutler AJ (1998) (+)-Abscisic acid metabolism, 3-ketoacyl-coenzyme a synthase gene expression, and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus. Embryos Plant Physiol 117:979–987

    CAS  PubMed  Google Scholar 

  81. Rachev R, Gancheva V, Bojkova S, Christov C, Zafirova T (1997) Gibberellin biosynthesis by Fusarium moniliforme in the presence of hydrophobic resin Amberlite XAD-2. Bulg J Plant Physi 12:24–31

    Google Scholar 

  82. Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Biol 51:501–531

    CAS  Google Scholar 

  83. Rajulu MBG, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, El Gueddari NE, Moerschbacher BM (2011) Chitinolytic enzymes from endophytic fungi. Fungal Divers 47:43–53

    Google Scholar 

  84. Razem FA, Baron K, Hill RD (2006) Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9:454–459

    CAS  PubMed  Google Scholar 

  85. Redman R, Rodriguez R (2007) The population dynamics and symbiotic lifestyle of fungal endophytes in plant hosts is driven by environmental conditions. Comp Biochem Physiol Part A: Mol Integr Physiol 146:S220

    Google Scholar 

  86. Redman RS, Kim YO, Woodward CJ, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PloS One 6:e14823

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Reeve DR, Crozier A (1974) An assessment of gibberellin structure-activity relationships. J Exp Bot 25:431–445

    CAS  Google Scholar 

  88. Rim SO, You YH, Yoon HJ, Kim YE, Lee JH, Kang MS, Kim CM, Seu YB, Kim JG (2013) Characterization of gibberellin biosynthetic gene cluster from Fusarium proliferatum. J Microbiol Biotechnol 23(5):623–629

    CAS  PubMed  Google Scholar 

  89. Rivera-Orduña FN, Suarez-Sanchez RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB (2011) Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers 47:65–74

    Google Scholar 

  90. Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289

    CAS  PubMed  Google Scholar 

  91. Sandhya V, Shrivastava M, Ali SZ, Prasad VSSK (2017) Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agric Sci 43:22–34

    Google Scholar 

  92. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  93. Shimada A et al (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456:520

    CAS  PubMed  Google Scholar 

  94. Souza RD, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    PubMed  PubMed Central  Google Scholar 

  95. Sukumar P, Legue V, Vayssieres A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant, Cell Environ 36:909–919

    CAS  Google Scholar 

  96. Swain SM, Reid JB, Kamiya Y (1997) Gibberellins are required for embryo growth and seed development in pea. Plant J 12:1329–1338

    CAS  Google Scholar 

  97. Tanwar A, Aggarwal A (2014) Multifaceted potential of bioinoculants on red bell pepper (F1 hybrid, Indam Mamatha) production. J Plant Inter 9:82–91

    CAS  Google Scholar 

  98. T-P Sun (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567–570

    Google Scholar 

  99. Tsavkelova E, Oeser B, Oren-Young L, Israeli M, Sasson Y, Tudzynski B, Sharon A (2012) Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genet Biol 49:48–57

    CAS  PubMed  Google Scholar 

  100. Tudzynski B, Mihlan M, Rojas MC, Linnemannstöns P, Gaskin P, Hedden P (2003) Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi des and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively. J Biol Chem 278:28635–28643

    CAS  PubMed  Google Scholar 

  101. Turner CE, Elsohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169–234

    CAS  PubMed  Google Scholar 

  102. Ullah I, Khan AR, Park G-S, Lim J-H, Waqas M, Lee I-J, Shin J-H (2013) Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci Biotechnol 22:25–31

    CAS  Google Scholar 

  103. Umezawa T et al (2006) CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46:171–182

    CAS  PubMed  Google Scholar 

  104. Vellore JM (2001) Iron Acquisition in Rhodococcus erythrolpolis: the Isolation of Mutant (s) that Do Not Produce a Siderophore

  105. Waller F et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    CAS  PubMed  Google Scholar 

  106. Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Waqas M, Khan AL, Hamayun M, Shahzad R, Kim Y-H, Choi K-S, Lee I-J (2015) Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids. Eur J Plant Pathol 141:803–824

    CAS  Google Scholar 

  108. Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    CAS  PubMed  Google Scholar 

  111. Yang D-L et al (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci 109:E1192–E1200

    CAS  PubMed  Google Scholar 

  112. You Y-H et al (2012) Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol 22:1549–1556

    PubMed  Google Scholar 

  113. You Y-H, Kwak TW, Kang S-M, Lee M-C, Kim J-G (2015) Aspergillus clavatus Y2H0002 as a new endophytic fungal strain producing gibberellins isolated from nymphoides pe ltata in fresh water. Mycobiology 43:87–91

    PubMed  PubMed Central  Google Scholar 

  114. Zhang S, Gan Y, Xu B (2016) Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci 7:1405

    PubMed  PubMed Central  Google Scholar 

  115. Zhao Z et al (2013) A role for a dioxygenase in auxin metabolism and reproductive development in rice. Dev Cell 27:113–122

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B04035601).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to In-Jung Lee or Anwar Hussain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by S. Renault.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lubna, Asaf, S., Khan, A.L. et al. Growth-promoting bioactivities of Bipolaris sp. CSL-1 isolated from Cannabis sativa suggest a distinctive role in modifying host plant phenotypic plasticity and functions. Acta Physiol Plant 41, 65 (2019). https://doi.org/10.1007/s11738-019-2852-7

Download citation

Keywords

  • Endophytic fungus
  • Bipolaris sp. CSL-1
  • Indole-3-acetic acid
  • Gibberellin
  • Waito-C rice