Skip to main content
Log in

Seed quality deterioration dynamics for isoflavones biosynthesis in soybean (Glycine max L. Merr.) seeds against field mildew stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Continuous rainfall during the harvest period of soybean leads to the delayed harvest of mature seeds and favors the infection of field mold that eventually causes seed mildew in the field under high humid conditions. Soybean isoflavones are a subgroup of flavonoids which possess crucial roles in the responses of soybean to multiple abiotic and/or biotic stresses. To fully reveal the role of isoflavones in the responses of soybean seeds to filed mildew (FM) stress, two soybean genotypes with different resistance to FM stress were treated in a controlled greenhouse which provided high humid conditions in this current research. The dynamic changes of isoflavones contents and the expression levels of four major genes involved in isoflavones biosynthesis pathway were measured by liquid chromatography–mass spectrometry (LC–MS) and quantitative real-time PCR (qRT-PCR), respectively. The current results showed that the contents of major isoflavones components in resistant genotype C103 were higher than the susceptive genotype ND12 before FM treatment. Whereas after FM treatment, the dynamic changing patterns of isoflavones contents and some major genes expression were opposite between these two genotypes, and the biosynthesis of isoflavones was more rapid in resistant genotype compared to susceptible one. Noticeably, the biosynthesis of isoflavones aglycones which exhibit better bioactivities was remarkably promoted after FM treatment in resistant genotype C103, further revealing the important role of isoflavones in the resistance against FM stress. In sum, this research investigated the role of isoflavones against FM stress, the results demonstrated higher inherent contents and more rapid biosynthesis of isoflavones after FM treatment could establish stronger resistant foundation in soybean seeds against the FM stress. These results would provide new insights into the mechanism research of soybean against FM stress, but how the stress systematically regulates isoflavones and other resistant network still needs further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (31301277 and 31401329) and the China Postdoctoral Science Foundation (2014 M560724).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenyu Yang or Jiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Wojtaszek.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Qin, W., Yang, C. et al. Seed quality deterioration dynamics for isoflavones biosynthesis in soybean (Glycine max L. Merr.) seeds against field mildew stress. Acta Physiol Plant 41, 57 (2019). https://doi.org/10.1007/s11738-019-2845-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2845-6

Keywords

Navigation