Physiological introspection into differential drought tolerance in rice cultivars of North East India

Abstract

Drought is a vice to world crop production, exponentially enhanced by global climate change. Rice, a basic food crop for a major chunk of world populace, is largely affected by environmental challenges such as drought, salinity and heavy metal. This study brings to limelight differential drought tolerance capacity of rice varieties indigenous to North East India, a hot bed of indica rice diversity. Initial screening of rice varieties were performed through physiological dose-dependent studies under PEG (0%, 10%, and 20% which is equal to osmotic potential values of 0.001, 0.54 and 1.09 MPa, respectively), induced drought stress for three time intervals of 1, 3 and 5 days. Hierarchical clustering of the parameters on which the cultivars were analysed revealed Tampha and KMJ 1-12-3 to be relatively more tolerant whereas Chandan and Ketaki Joha as the sensitive ones. Biochemical studies for hydrogen peroxide (H2O2), proline, lipid peroxidation (MDA), lipoxygenase (LOX), superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) were then performed on two cultivars (Tampha and Chandan) to elucidate the differential tolerance to drought, focusing on anti-oxidative response mechanism. The biochemical fingerprint showed significantly lower accumulation of H2O2 and MDA; higher accumulation of proline; and higher activity of SOD, CAT, DHAR, MDHAR and GR in the tolerant variety Tampha when compared to Chandan. In addition, alteration of chlorophyll fluorescence due to stress was also monitored to ascertain the variation in photosynthetic efficiency between the tolerant and sensitive cultivars. Tampha showed better photosynthetic activity in comparison to Chandan as quantified by measuring chlorophyll fluorescence. This manuscript thus throws new light into the drought stress response of the varieties from North East India with global implications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ali MN, Yeasmin L, Gantait S, Goswami R, Chakraborty S (2014) Screening of rice landraces for salinity tolerance at seedling stage through morphological and molecular markers. Physiol Mol Biol Plants 20(4):411–423

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  3. Annual Report IRRI (2016). https://irri.org/resources-and-tools/publications

  4. Awasthi J, Saha B, Chowardhara B, Devi S, Borgohain P, Panda S (2018) Qualitative analysis of lipid peroxidation in plants under multiple stress through schiff’s reagent: a histochemical approach. Bioprotocol 8(8):e2807. https://doi.org/10.21769/BioProtoc.2807

    Article  Google Scholar 

  5. Axelrod B, Cheesbrough TM, Laakso S (1981) Lipoxygenase from soybeans. Methods Enzymol 71:441–451

    CAS  Article  Google Scholar 

  6. Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010) Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regul 60(1):51

    CAS  Article  Google Scholar 

  7. Bates LS, Walden RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    CAS  Article  Google Scholar 

  8. Bhaskara GB, Wen TN, Nguyen TT, Verslues PE (2017) Protein phosphatase 2Cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response. Plant Cell Online 29(1):169–191

    CAS  Article  Google Scholar 

  9. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  10. Cheng F, Lu J, Gao M, Shi K, Kong Q, Huang Y et al (2016) Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. Front Plant Sci 7:519. https://doi.org/10.3389/fpls.2016.01519

    Article  Google Scholar 

  11. Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3(3):156–165

    PubMed  PubMed Central  Article  Google Scholar 

  12. Das A, Ghosh PK, Lal R, Saha R, Ngachan S (2017) Soil quality effect of conservation practices in maize–rapeseed cropping system in Eastern Himalaya. Land Degrad Dev 28(6):1862–1874

    Article  Google Scholar 

  13. Devi LJ (2014) Evaluation of some common rice varieties of Manipur for resistance against rice root-knot nematode. Eur J Biotechnol Biosci 1(3):39–41

    Google Scholar 

  14. Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72(4):673–689

    CAS  PubMed  Article  Google Scholar 

  15. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59(2):309–314

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    CAS  PubMed  Article  Google Scholar 

  18. Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, Noble I (2013) Policy: sustainable development goals for people and planet. Nature 495(7441):305–307

    CAS  PubMed  Article  Google Scholar 

  19. Hasanuzzaman M, Nahar K, Rahman A, Inafuku M, Oku H, Fujita M (2018) Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiol Mol Biol Plants 24:1–12

    Article  CAS  Google Scholar 

  20. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125(1):189–198

    CAS  PubMed  Article  Google Scholar 

  21. Hellal FA, El-Shabrawi HM, El-Hady MA, Khatab IA, El-Sayed SAA, Abdelly C (2018) Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J Genet Eng Biotechnol 16(1):203–212

    CAS  PubMed  Article  Google Scholar 

  22. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347:1–39

    Google Scholar 

  23. Huang L, Li M, Shao Y, Sun T, Li C, Ma F (2018) Ammonium uptake increases in response to PEG-induced drought stress in Malus hupehensis Rehd. Environ Exp Bot 151:32–42

    CAS  Article  Google Scholar 

  24. Joshi R, Anwar K, Das P, Singla-Pareek SL, Pareek A (2017) Overview of methods for assessing salinity and drought tolerance of transgenic wheat lines. In: Wheat biotechnology. Humana Press, New York, pp 83–95

    Google Scholar 

  25. Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, … Guo TC (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biologiaplantarum 57(4):718–724

    CAS  Google Scholar 

  26. Kocsy G, Brunner M, Rüegsegger A, Stamp P, Brunold C (1996) Glutathione synthesis in maize genotypes with different sensitivity to chilling. Planta 198:365–370

    CAS  Article  Google Scholar 

  27. Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162

    CAS  PubMed  Article  Google Scholar 

  28. Liu T, Sheng M, Wang CY, Chen H, Li Z, Tang M (2015) Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53(2):250–258

    CAS  Article  Google Scholar 

  29. Lu HB, Qiao YM, Gong XC, Li HQ, Zhang Q, Zhao ZH, Meng LL (2015) Influence of drought stress on the photosynthetic characteristics and dry matter accumulation of hybrid millet. Photosynthetica 53(2):306–311

    CAS  Article  Google Scholar 

  30. Ma F, Cheng L (2004) Exposure of the shaded side of apple fruit to full sun leads to upregulation of both the xanthophyll cycle and the ascorbate–glutathione cycle. Plant Sci 166(6):1479–1486

    CAS  Article  Google Scholar 

  31. Ma NL, Lah WAC, Kadir NA, Mustaqim M, Rahmat Z, Ahmad A et al (2018) Susceptibility and tolerance of rice crop to salt threat: physiological and metabolic inspections. PLoS One 13(2):e0192732

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. McCabe GJ, Wolock DM (2015) Variability and trends in global drought. Earth Space Sci 2(6):223–228

    Article  Google Scholar 

  33. Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation. Plant Cell Physiol 33:541–553

    CAS  Google Scholar 

  34. Mostofa MG, Hossain MA, Fujita M, Tran LSP (2015) Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 5:11433. https://doi.org/10.1038/srep11433

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Munne-Bosch S, Pinto-Marijuan M (2016) Free radicals, oxidative stress and antioxidants. Encycl Appl Plant Sci 2:16–19

    Google Scholar 

  36. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  37. Nguyen TTT, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena ACM, Nguyen HT (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Genet Genom 272(1):35–46

    CAS  Article  Google Scholar 

  38. Omisun T, Sahoo S, Saha B, Panda SK (2018) Relative salinity tolerance of rice cultivars native to North East India: a physiological, biochemical and molecular perspective. Protoplasma 255(1):193–202

    CAS  PubMed  Article  Google Scholar 

  39. Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G (2009) Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9(1):28

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17(6):603–614

    CAS  PubMed  Article  Google Scholar 

  41. Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    PubMed  Article  CAS  Google Scholar 

  42. Sagisaka S (1976) The occurrence of peroxide in a perennial plant Populasgelrica. Plant Physiol 57:308–309

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Saha B, Mishra S, Awasthi JP, Sahoo L, Panda SK (2016a) Enhanced drought and salinity tolerance in transgenic mustard [Brassica juncea (L.) Czern&Coss.] overexpressing Arabidopsis group 4 late embryogenesis abundant gene (AtLEA4-1). Environ Exp Bot 128:99–111

    CAS  Article  Google Scholar 

  44. Saha B, Borovskii G, Panda SK (2016b) Alternative oxidase and plant stress tolerance. Plant signal Behav 11(12):e1256530

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. Sahoo S, Awasthi JP, Sunkar R, Panda SK (2017) Determining glutathione levels in plants. In: Plant stress tolerance. Humana Press, New York, pp 273–277

    Google Scholar 

  46. Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127(3):887–898

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296

    CAS  PubMed  Article  Google Scholar 

  48. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319

    CAS  PubMed  Article  Google Scholar 

  49. Siddiqui MN, Mostofa MG, Akter MM, Srivastava AK, Sayed MA, Hasan MS, Tran LSP (2017) Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere 187:385–394

    CAS  PubMed  Article  Google Scholar 

  50. Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 175(2):408–413

    CAS  PubMed  Article  Google Scholar 

  51. Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. PhysiologiaPlantarum 121(1):58–65

    CAS  Google Scholar 

  52. Sun J, Hu W, Zhou R, Wang L, Wang X, Wang Q et al (2015) The Brachypodiumdistachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. Plant Cell Rep 34(1):23–35

    CAS  PubMed  Article  Google Scholar 

  53. Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Toyooka K (2017) Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J 90(1):61–78

    CAS  PubMed  Article  Google Scholar 

  54. Van Aken O, Van Breusegem F (2015) Licensed to kill: mitochondria, chloroplasts, and cell death. Trends Plant Sci 20(11):754–766

    PubMed  Article  CAS  Google Scholar 

  55. Wu Z, Zhao X, Sun X, Tan Q, Tang Y, Nie Z, Hu C (2015) Antioxidant enzyme systems and the ascorbate–glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Chemosphere 138:526–536

    CAS  PubMed  Article  Google Scholar 

  56. Yang Z, Dai Z, Lu R, Wu B, Tang Q, Xu Y et al (2017) Transcriptome analysis of two species of jute in response to polyethylene glycol (PEG)-induced drought stress. Sci Rep 7(1):16565

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A (2017) Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Front Plant Sci 8:953

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We highly acknowledge Regional Agricultural Research Station (RARS), Akbarpur (Karimganj), Assam, India; Regional Rainfed Lowland Rice Research Station (RRLRRS) Gerua, Assam, India; and Central Agriculture University (CAU), Imphal, Manipur, India for supplying us with valuable rice seeds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanjib Kumar Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by K. Apostol.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Saha, B., Awasthi, J.P. et al. Physiological introspection into differential drought tolerance in rice cultivars of North East India. Acta Physiol Plant 41, 53 (2019). https://doi.org/10.1007/s11738-019-2841-x

Download citation

Keywords

  • Oryza sativa
  • Drought
  • Abiotic stress
  • Tolerance
  • Physiology