Skip to main content
Log in

Natural cold acclimation of Ligustrum lucidum in response to exogenous application of paclobutrazol in Beijing

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

To investigate the influence of exogenous paclobutrazol (PBZ) application on the natural cold acclimation of Ligustrum lucidum, 1-year-old L. lucidum seedlings were conducted with PBZ at four concentrations (0, 100, 300, and 500 mg L−1) from September to December 2016, and leaves were collected to measure physiological and biochemical parameters. Results showed that 500 mg L−1 was the optimum concentration, which led to stronger freezing tolerance during natural cold acclimation. The enhanced freezing tolerance induced by exogenous PBZ application was attributed to the accumulation of chlorophyll, proline, soluble protein, and soluble sugar, and the regulation of gibberellic acid and abscisic acid. PBZ treatments initiated a cascade of steps for advancing the cold acclimation of L. lucidum. It appears that exogenous PBZ application may be applied to L. lucidum grown in northern China, where the growing periods are short and there are early fall frost events and low mid-winter temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmedullah M, Kawahami A, Sandidge CR, Wample RL (1986) Effect of paclobutrazol on the vegetative growth, yield, quality, and winter hardiness of buds of concord grape. HortScience 21:273–274

    CAS  Google Scholar 

  • Aly AA, Latif HH (2011) Differential effects of paclobutrazol on water stress alleviation through electrolyte leakage, phytohormones, reduced glutathione and lipid peroxidation in some wheat genotypes (Triticum aestivum L.) grown in-vitro. Rom Biotech Lett 16:6710–6721

    CAS  Google Scholar 

  • Arora R, Wisniewski ME, Scorza R (1992) Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). I. Seasonal changes in cold hardiness and polypeptides of bark and xylem tissues. Plant Physiol 99:1562–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baninasab B (2009) Amelioration of chilling stress by paclobutrazol in watermelon seedlings. Sci Hort 121:144–148

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare LD (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Campbell S, Close T (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  • Churchill GC, Reaney MJT, Abrams SR, Gusta LV (1998) Effects of abscisic acid and abscisic acid analogs on the induction of freezing tolerance of winter rye (Secale cereal L.) seedlings. Plant Growth Regul 25:35–45

    Article  CAS  Google Scholar 

  • Coleman WK, Estabrooks EN (1992) Enhancement of cold hardiness in apple trees by paclobutrazol, thidiazuron and flurprimidol. Can J Plant Sci 72:1267–1274

    Article  CAS  Google Scholar 

  • Coleman WK, Estabrooks EN, Hara MO, Embleton J, King RR (1992) Seasonal changes in cold hardiness, sucrose and sorbitol in apple trees treated with plant growth regulators. HortScience 67:429–435

    CAS  Google Scholar 

  • Dallaire S, Houde M, Gagne Y, Saini HS, Boileau S, Chevrier N, Sarhan F (1994) ABA and low-temperature induce freezing tolerance via distinct regulatory pathways in wheat. Plant Cell Physiol 35:1–9

    CAS  Google Scholar 

  • Davis JD, Evert RF (1970) Seasonal cycle of phloem development in woody vines. Bot Gaz 131:128–138

    Article  Google Scholar 

  • Durham RE, Moore GA, Haskell D, Guy CL (1991) Cold-acclimation induced changes in freezing tolerance and translatable RNA content in Citrus grandis and Poncirus trifoliate. Physiol Plant 82:519–522

    Article  CAS  Google Scholar 

  • Feng Z, Guo A, Feng Z (2003) Amelioration of chilling stress by triadimefon in cucumber seedlings. Plant Growth Regul 39:277–283

    Article  CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. J Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hoffmann-Benning S, Kende H (1992) On the role of abscisic-acid and gibberellins in the regulation of growth in rice. Plant Physiol 99:1156–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun HL, Duk JY, Su JK, Doil C, Hee JL (2012) Intraspecies differences in cold hardiness, carbohydrate content and β-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation. Tree Physiol 32:1533–1540

    Article  Google Scholar 

  • Kasuga J, Mizuno K, Arakawa K, Fujikawa S (2007) Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells. Cryobiology 55(3):305–314

    Article  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1–16

    Article  Google Scholar 

  • Lenahan OM, Graves WR, Arora R (2010) Cold hardiness and deacclimation of Styrax americanus from three provenances. Hort Sci 45:1819–1823

    Google Scholar 

  • Li HS (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education Press, Beijing, pp 194–197

    Google Scholar 

  • Lim CC, Arora R (1998) Comparing Gompertz and Richards functions to estimate freezing injury in Rhododendron using electrolyte leakage. J Am Soc Hort Sci 123:246–252

    Google Scholar 

  • Malgorzata B, Zlatko Z, Nevena S (2002) Effect of paclobutrazol on wheat seedlings under low temperature stress. Bulg J Plant Physiol 28:75–84

    Google Scholar 

  • Marian CO, Eris A, Krebs SL, Arora R (2003) Environmental regulation of a 25 kDa dehydrin in relation to Rhododendron cold acclimation. J Am Soc Hort Sci 129:354–359

    Google Scholar 

  • Matysik J, Alia A, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mora-Herrera ME, Lopez-Delgado HA (2007) Freezing tolerance and antioxidant activity in potato microplants induced by abscisic acid treatment. Am J Potato Res 84:467–475

    Article  CAS  Google Scholar 

  • Morin X, Améglio T, Ahas R, Kurz-Besson C, Lanta V et al (2007) Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species. Tree Physiol 27:817–825

    Article  CAS  PubMed  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  CAS  PubMed  Google Scholar 

  • Palonen P, Buszard D (1997) Current state of cold hardiness research on fruit crops. Can J Plant Sci 77:399–420

    Article  Google Scholar 

  • Palva ET, Thtihariju S, Tamminen I, Puhakdinen T, Laitinen R et al (2002) Biological mechanisms of low temperature stress response: cold acclimation and development of freezing tolerance in plants. Jpn Intl Res Ctr Agri Sci Work Rep 23:9–15

    CAS  Google Scholar 

  • Panicker GK, Matta FB (2016) Effect of abscisic acid and paclobutrazol on cold hardiness of rabbiteye blueberry (Vaccinium ashei Reade). Acta Hortic 1117:315–320

    Article  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilising effects of glycine betaine on the structure and function of the oxygen-evolving photosystem ll complex. Photosyn Res 44:243–252

    Article  CAS  PubMed  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424

    Article  CAS  Google Scholar 

  • Setia RC, Bhathal G, Setia N (1995) Influence of paclobutrazol on growth and yield of Brassica carinata A.Br. Plant Growth Regul 16:121–127

    Article  CAS  Google Scholar 

  • Setia RC, Kaur P, Setia N, Anuradha (1996) Influence of paclobutrazol on growth and development of fruit in Brassica juncea (L.) Czern and Coss. Plant Growth Regul 20:307–316

    Article  CAS  Google Scholar 

  • Shahrokhi M, Tehranifar A, Hadizadeh H, Selahvarzi Y (2011) Effect of drought stress and paclobutrazol-treated seeds on physiological response of Festuca arundinacea L. Master and Lolium perenne L. Barrage. J Biol Environ Sci 5:77–85

    Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2006) Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloid Surf B Biointerfaces 47:132–139

    Article  CAS  Google Scholar 

  • Sharma D, Dubey A, Srivastav M, Singh A, Sairam R et al (2011) Effect of putrescine and paclobutrazol on growth, physiochemical parameters and nutrient acquisition of salt-sensitive citrus rootstock karna khatta (Citrus karna Raf.) under NaCl stress. J Plant Growth Regul 30:301

    Article  CAS  Google Scholar 

  • Sharma D, Dubey A, Srivastav M, Singh A, Pandey R, Dahuja A (2013) Effect of paclobutrazol and putrescine on antioxidant enzymes activity and nutrients content in salt tolerant citrus rootstock sour orange under sodium chloride stress. J Plant Nutr 36:1765–1779

    Article  CAS  Google Scholar 

  • Soluklui AAG, Ershadi A, Tabatabaee ZE, Fallahi E (2014) Paclobutrazol-induced biochemical changes in pomegranate (Punica granatum L.) cv. ‘Malas Saveh’ under freezing stress. Int J Hortic Sci Tech 1:181–190

    CAS  Google Scholar 

  • Souza-Machado V, Pitblado R, Ali A, May P (1999) Paclobutrazol in tomato (Lycopersicon esculentum) for improved tolerance to early transplanting and earlier harvest maturity. Acta Hortic 487:139–144

    Article  CAS  Google Scholar 

  • Srivastav M, Kishor A, Dahuja A, Sharma RR (2010) Effect of paclobutrazol and salinity on ion leakage, proline content and activities of antioxidant enzymes in mango (Mangifera indica L.). Sci Hortic 125:785–788

    Article  CAS  Google Scholar 

  • Suojala T, Lindén L (1997) Frost hardiness of Philadelphus and Hydrangea clones during ecodormancy. Acta Agric Scand B Soil Plant Sci 47:58–63

    Google Scholar 

  • Tafazoli E, Beyl C (1993) Changes in endogenous abscisic acid and cold hardiness in Actinidia treated with triazole growth retardants. J Plant Growth Regul 12:79–83

    Article  CAS  Google Scholar 

  • Tari I (2015) Abaxial and adaxial stomatal density, stomatal conductances and water status of bean primary leaves as affected by paclobutrazol. Biol Plant 47:215–220

    Article  Google Scholar 

  • Teets TM, Hummel RL, Guy CL (1989) Cold-acclimation of Hibiscus rosa-sinensis L. and Hybiscus syriacus L. in natural and controlled environments. Plant Cell Environ 12:495–502

    Article  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Walser RH, Davis TD (1986) Cold hardiness, rest, and growth of peach trees as influences by paclobutrazol. Proc Plant Growth Reg Soc Am 13:177–181

    Google Scholar 

  • Wang SY, Byun JK, Steffens GL (2010) Controlling plant growth via the gibberellin biosynthesis system—II. Biochemical and physiological alterations in apple seedlings. Physiol Plant 63:169–175

    Article  Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants. Sci 169:1269–1278

    Article  CAS  Google Scholar 

  • Welling A, Palva ET (2008) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181

    Article  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close T, Yu XM et al (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Wolpert JA, Howell GS (1986) Cold acclimation of concord grapevines III. Relationship between cold hardiness, tissue water content, and shoot maturation. Vitis 25:151–159

    Google Scholar 

  • Xiang J, Wu H, Zhang YP, Zhang YK, Wang YF et al (2017) Transcriptomic analysis of gibberellin- and paclobutrazol-treated rice seedlings under submergence. Int J Mol Sci 18:2225

    Article  PubMed Central  Google Scholar 

  • Yadav DK, Hemantaranjan A (2017) Mitigating effects of paclobutrazol on flooding stress damage by shifting biochemical and antioxidant defense mechanisms in mungbean (Vigna radiata L.) at pre-flowering stage. Legume Res 40:453–461

    Google Scholar 

  • Yang Y, Jia ZK, Chen FJ, Sang ZY, Ma LY (2015a) Comparative analysis of natural cold acclimation and deacclimation of two Magnolia species with different winter hardiness. Acta Physiol Plant 37:129

    Article  CAS  Google Scholar 

  • Yang Y, Jia ZK, Chen FJ, Sang ZY, Duan J et al (2015b) Natural cold acclimatisation and de-acclimatisation of Magnolia wufengensis in response to alternative methods of application of abscisic acid. J Hortic Sci Biotech 90:704–710

    Article  CAS  Google Scholar 

  • Yang Y, Jia ZK, Chen FJ, Sang ZY, Ma LY (2015c) Physiological and biochemical processes of Magnolia wufengensis in response to foliar abscisic acid application during natural cold acclimation. HortSci 50:387–394

    CAS  Google Scholar 

  • Yang Y, Yao N, Jia ZK, Duan J, Chen FJ et al (2016) Effect of exogenous abscisic acid on cold acclimation in two Magnolia species. Biol Plant 60:555–562

    Article  CAS  Google Scholar 

  • Yelenosky G, Vu JC, Wutscher HK (1995) Influence of paclobutrazol in the soil on growth, nutrient elements in the leaves, and flood/freeze tolerance of citrus rootstock seedlings. Plant Growth Regul 14:129–134

    Article  CAS  Google Scholar 

  • Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Chaum S (2017) Water-deficit tolerance in sweet potato [Ipomoea batatas (L.) Lam.] by foliar application of paclobutrazol: role of soluble sugar and free proline. Front Plant Sci 8:1400

    Article  PubMed  PubMed Central  Google Scholar 

  • Zabadal TJ, Dami IE, Goffinet MC, Martinson TE, Chien ML (2007) Winter injury to grapevines and methods of protection. Michigan State University Extension Bulletin E2930. Michigan State University, East Lansing, Michigan

Download references

Acknowledgements

We gratefully acknowledge anonymous reviewers for their helpful comments on this manuscript. This study was supported by the National Natural Science Foundation of China (31600498), Key Project of Beijing Municipal Education Committee (KZ201510020021), The Project of Coustruction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20180509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingsheng Leng.

Additional information

Communicated by R. Aroca.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, R., Duan, X. et al. Natural cold acclimation of Ligustrum lucidum in response to exogenous application of paclobutrazol in Beijing. Acta Physiol Plant 41, 15 (2019). https://doi.org/10.1007/s11738-018-2800-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2800-y

Keywords