Skip to main content
Log in

Physiological and anatomical response of foliar silicon application to Dendrocalamus brandisii plantlet leaves under chilling

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The physiological and anatomical responses of different concentrations (0.0, 0.5, 1.0, 2.0 and 4.0 mM sodium silicate) of Si foliar-application in improving the chilling tolerance of Dendrocalamus brandisii plantlets were investigated. The Si-supplemented D. brandisii plantlets exhibited better chilling tolerance, associated with the enhancement of photosynthetic pigment and soluble sugar and starch content, increasing CAT and SOD activities and decreasing MDA and H2O2 level, as well as thicker leaf blades and mesophyll tissues. Furthermore, distinct changes in phytolith morphology were observed, including formation of a new phytolith morphotype (dumb-bell with nodular shark), significantly higher frequency of elongated phytoliths, and the increased length of elongated and elliptical phytoliths. Results indicated the physiological and anatomical response showed weak positive linkage with increasing amount of silicon applied, and the 1.0 mM sodium silicate on D. brandisii plantlet leaves was the most effective treatment in enhancing chilling tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Balakhnina T, Borkowska A (2013) Effects of silicon on plant resistance to environmental stresses: review. Int Agrophys 27:225–232

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Gallego L, Distel RA (2004) Phytolith Assemblages in Grasses Native to Central Argentina. Ann Bot 94:865–874

    Article  Google Scholar 

  • Gong HJ, Zhu XY, Chen KM, Wang SM, Zhang CL (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Habibi G (2015a) Exogenous silicon leads to increased antioxidant capacity in freezing-stressed pistachio leaves. Acta Agric Slov 105:43–52. https://doi.org/10.14720/aas.2015.105.1.05

    Article  CAS  Google Scholar 

  • Habibi G (2015b) Effects of soil-and foliar-applied silicon on the resistance of grapevine plants to freezing stress. Acta Biol Szeged 59:109–117

    Google Scholar 

  • Habibi G (2016) Effect of foliar-applied silicon on photochemistry, antioxidant capacity and growth in maize plants subjected to chilling stress. Acta Agric Slov 107:33–43

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C Abiotic stress-plant responses and applications in agriculture. Presses Universitaires de France, Paris

    Google Scholar 

  • He Y, Liu Y, Cao W, Huai M, Xu B, Huang B (2005) Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci 45:988–995

    Article  CAS  Google Scholar 

  • He Y, Xiao H, Wang H, Chen Y, Yu M (2010) Effect of silicon on chilling-induced changes of solutes, antioxidants, and membrane stability in seashore paspalum turfgrass. Acta Physiol Plant 32:487–494. https://doi.org/10.1007/s11738-009-0425-x

    Article  CAS  Google Scholar 

  • Iwasaki K, Maier P, Fecth M, Horst WJ (2002) Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). J Plant Physiol 159:167–173

    Article  CAS  Google Scholar 

  • Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water stress conditions. J Plant Nutr 29:1469–1480

    Article  CAS  Google Scholar 

  • Kido N, Yokoyama R, Yamamoto T, Furukawa J, Iwai H, Satoh S, Nishitani K (2015) The matrix polysaccharide (1;3,1;4)-beta-d-glucan is involved in silicon-dependent strengthening of rice cell wall. Plant Cell Physiol 56:268–276

    Article  CAS  Google Scholar 

  • Li RC (2010) Taxonomic significance and seasonal variations of lipid from bamboo leaf and its phytolith. Ph.D. Thesis, China University of Geosciences

  • Li Q, Xu DK, Lu HY (2005) Morphology of phytolith in bambusoideae and its ecological significance. Quat Sci 25:777–784

    Google Scholar 

  • Li DZ, Wang ZP, Zhu ZD, Xia NH, Jia LZ, Guo ZH, Yang GY, Stapleton CMA (2006) Bambuseae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China. 22, Poaceae. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Liang YC (1998) Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere 8:289–296

    Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164. https://doi.org/10.1078/0176-1617-01065

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Zhu J, Li Z, Chu G, Ding Y, Zhang J, Sun W (2008) Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ Exp Bot 64:286–294. https://doi.org/10.1016/j.envexpbot.2008.06.005

    Article  CAS  Google Scholar 

  • Lianopoulou V, Bosabalidis AM, Patakas A, Lazari D, Panteris E (2014) Effects of chilling stress on leaf morphology, anatomy, ultrastructure, gas exchange, and essential oils in the seasonally dimorphic plant Teucrium polium (Lamiaceae). Acta Physiol Plant 36:2271–2281

    Article  CAS  Google Scholar 

  • Lin ZF, Li SS, Lin G, Sun GC, Guo JY (1984) The relationship between the senescence of rice leaves and superoxide dismutase activity and lipid peroxidation. Bull Bot 26:605–615 (in Chinese)

    CAS  Google Scholar 

  • Lin QY, Hu J, Wen GS, Zou W, Li GH, Yang SL (2008) Diurnal variations of photosynthesis in leaves of Phyllostachys edulis in winter. J Fujian Coll For 28:61–64 (in Chinese)

    CAS  Google Scholar 

  • Liu J, Lin S, Xu P, Wang X, Bai J (2009) Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agric Sci China 8:1075–1086. https://doi.org/10.1016/S1671-2927(08)60315-6

    Article  CAS  Google Scholar 

  • Liu Y, Li JM, Zheng G (2015) Effects of silicon nutrition on photosynthesis and fluorescence of cucumber. J Northwest Agric For Univ 43:73–78 (in Chinese)

    Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nuitr 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057. https://doi.org/10.1007/s00018-008-7580-x

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691. https://doi.org/10.1038/nature04590

    Article  CAS  PubMed  Google Scholar 

  • Marin M, Koko V, Duletic-Lausevic S, Marin PD (2008) Micromorphology of trichomes of Thymus malyi (Lamiaceae). J Microsc 232:406–409

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Acedemic Press, London

    Google Scholar 

  • Meena VD, Dotaniya ML, Vassanda C, Rajendiran S, Aiay, Kundu S, Subba RA (2014) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India 84:505–518

  • Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agric Biol 8530:293–297

    Google Scholar 

  • Ning D, Song A, Fan F, Li Z, Liang Y (2014) Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance. PLoS One 9:e102681

    Article  Google Scholar 

  • Pearsall DM (2000) Paleoethnobotany: a handbook of procedures, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Piperno DR (1988) Phytolith analysis—an archeological and geological perspective. Academic Press, San Diego

    Google Scholar 

  • Raven JA (2001) Silicon transport at the cell and tissue level. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 41–55. https://doi.org/10.1016/s0928-3420(01)80007-0

    Chapter  Google Scholar 

  • Rovner I (1983) Plant opal phytolith analysis: major advances in archaeobotanical research. Adv Archaeol Method Theory 6:225–266

    Article  Google Scholar 

  • Sanglard LM, Martins SC, Detmann KC, Silva PE, Lavinsky AO, Silva MM, Detmann E, Araújo WL, DaMatta FM (2014) Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiol Plant 152:355–366

    Article  CAS  Google Scholar 

  • Sun W, Zhang J, Fan Q, Xue G, Li Z, Liang Y (2010) Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defense resistance and its role as physical barrier. Eur J Plant Pathol 128:39–49

    Article  CAS  Google Scholar 

  • Sundar D, Chaitanya KV, Jutur PP, Reddy AR (2004) Low temperature-induced changes in antioxidative metabolism in rubber-producing shrub, guayule (Parthenium argentatum Gray). Plant Growth Regul 44:175–181

    Article  CAS  Google Scholar 

  • Tamai K, Ma J (2008) Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant Soil 307:21–27. https://doi.org/10.1007/s11104-008-9571-y

    Article  CAS  Google Scholar 

  • Twiss PC (1992) Predicted world distribution of C3 and C4 grass phytoliths. Phytolith systematics. Plenum Press, New York, pp 113–128

    Google Scholar 

  • Twiss PC, Suess CE, Smith RM (1969) Morphological classification of grass phytoliths. Soil Sci Soc Am Proc 33:109–115

    Article  Google Scholar 

  • Wang YJ, Lu HY (1993) Phytolith study and its application. Haiyang Press, Beijing (in Chinese)

    Google Scholar 

  • Wang CM, Wang J, Wang WJ, Mu QY, Deng QP (2008) The property and papermaking performance of the major bamboo species in Yunnan province. China Pulp Paper 27:10–12

    Google Scholar 

  • Xu CX, Liu YL (2006) Silicon absorption, transport and accumulation in plants. Acta Bot Boreali Occident Sin 26:1071–1078

    CAS  Google Scholar 

  • Zhang JH, Huang WD (2003) Research Advances on Mechanism of Cross-adaptation to Temperature Stresses in Plants. Chin Agric Sci Bull 19:95–100 (in Chinese)

    Google Scholar 

  • Zhang Q, Zhang JZ, Chow WS, Sun LL, Chen JW, Chen YJ, Peng CL (2011) The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. Photosynthetica 49:201–208. https://doi.org/10.1007/s11099-011-0012-4

    Article  CAS  Google Scholar 

  • Zhu J (2006) Mechanisms of silicon-enhancement of cold tolerance in winter wheat seedling. M.S. Thesis. Nanjing: Nanjing Agriculture University. In Chinese

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472 (in Chinese)

    Article  CAS  Google Scholar 

  • Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JP (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533. https://doi.org/10.1016/j.plantsci.2004.04.020

    Article  CAS  Google Scholar 

  • Zou Q (2008) Guide to plant physiology experiment. China Agriculture Press. Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The research was funded by National Science Foundation of China (Nos. 31460169 and 31560196); Yunnan Provincial Joint Special Project for Basic Research in Agriculture (No. 2017FG001-092); Yunnan Provincial Key Disciplines (Biology) Construction Project (No. 50097505) and PhD Candidate Innovation Project supported by Forestry First Discipline Degree program of Southwest Forestry University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Wang.

Additional information

Communicated by J. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, H., Zhang, Ly., Deng, L. et al. Physiological and anatomical response of foliar silicon application to Dendrocalamus brandisii plantlet leaves under chilling. Acta Physiol Plant 40, 208 (2018). https://doi.org/10.1007/s11738-018-2783-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2783-8

Keywords