Skip to main content
Log in

Identification of salt-induced transcripts by suppression subtractive hybridization and their expression analysis under the combination of salt and elevated CO2 conditions in Salicornia brachiata

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Soil salinity is a major abiotic stress that affects global agricultural productivity. Exploring the mechanisms that halophytes employ to thrive and flourish under saline environments is essential to increase the salt tolerance in sensitive crop species. Of the three halophytes used in this study Salicornia brachiata and Suaeda maritima belong to the same family Chenopodiaceae, while Sesuvium portulacastrum, a mangrove-associated halophyte, belongs to the family Aizoaceae. Assuming that halophytes of same family share similar salt tolerance mechanisms, we generated a suppression subtractive hybridization (SSH1) cDNA library from salt-treated leaf tissues of S. brachiata as tester and that of S. maritima as driver to identify salt-responsive genes unique to S. brachiata. To elucidate the difference in salt-tolerance mechanisms, and to identify salt-tolerance mechanisms amongst different families of halophytes, SSH2 library was generated from salt-treated leaf tissue of S. brachiata as tester and that of S. portulacastrum as driver. Totally, 87 and 49 EST clones representing unique genes were obtained from SSH1 and SSH2 libraries, respectively. Examination of the expression patterns of 17 (SSH1) and 15 (SSH2) differentially expressed genes using semi-quantitative RT-PCR confirmed up-regulation of these genes in shoots in response to salt treatment and elevated CO2 condition, but to a different extent. This study has provided insights into the molecular responses of S. brachiata to salt stress and elevated CO2 conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC:

Ambient CO2 without salt

EC:

Elevated CO2 without salt

ACS:

Ambient CO2 with salt

ECS:

Elevated CO2 with salt

References

  • Al-Zahrani AHH (1997) Salt tolerance in the halophyte Halopeplis perfoliata (Forssk.) Bge. Ex. Schweinf: seasonal variations in ion concentrations. Indian J Plant Physiol 2:135–137

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    Article  CAS  Google Scholar 

  • Ball M, Munns R (1992) Plant responses to salinity under elevated atmospheric concentrations of CO2 Australian. J Bot 40:515–525

    CAS  Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    Article  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1993) Mad bet for Rab. Nature 366:14–15

    Article  CAS  Google Scholar 

  • Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9:R130

    Article  Google Scholar 

  • Diatchenko L et al (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci 93:6025–6030

    Article  CAS  Google Scholar 

  • Fu X et al (2005) Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci 169:147–154

    Article  CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro H-W (2008) Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. J Exp Bol 60(1):137–151

    Article  Google Scholar 

  • Geissler N, Hussin S, Koyro H-W (2010) Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta 231:583–594

    Article  CAS  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Guo Z-F, Ou W-Z, Lu S-Y, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44:828–836

    Article  CAS  Google Scholar 

  • Habte E, Müller LM, Shtaya M, Davis SJ, KORFF M (2014) Osmotic stress at the barley root affects expression of circadian clock genes in the shoot. Plant Cell Environ 37:1321–1337

    Article  CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143:1705–1719

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  Google Scholar 

  • Jha B, Agarwal PK, Reddy PS, Lal S, Sopory SK, Reddy MK (2009) Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis. Genes Genet Syst 84:111–120

    Article  CAS  Google Scholar 

  • Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38:4823–4832

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress, vol 1. Chilling, freezing, and high temperature stresses. Academic Press, New York

    Google Scholar 

  • Lezin G, Kosaka Y, Yost HJ, Kuehn MR, Brunelli L (2011) A one-step miniprep for the isolation of plasmid DNA and lambda phage particles. PLoS One 6:e23457

    Article  CAS  Google Scholar 

  • Li X, Zhang L, Li Y, Ma L, Bu N, Ma C (2012) Changes in photosynthesis, antioxidant enzymes and lipid peroxidation in soybean seedlings exposed to UV-B radiation and/or Cd. Plant Soil 352:377–387

    Article  CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tiss Organ Cult 104(1):41–49

    Article  CAS  Google Scholar 

  • Low R et al (1996) Early salt stress effects on the differential expression of vacuolar H+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol 110:259–265

    Article  CAS  Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Marcolino-Gomes J et al (2014) Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One 9:e86402

    Article  Google Scholar 

  • Monastersky R (2013) Global carbon dioxide levels near worrisome milestone. Nature 497(7447):13–14

    Article  CAS  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parida AK, Jha B (2013) Physiological and biochemical responses reveal the drought tolerance efficacy of the halophyte Salicornia brachiata. J Plant Growth Regul 32:342–352

    Article  CAS  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Munoz-Rueda A (2009) The impact of salt stress on the water status of barley plants is partially mitigated by elevated CO2. Environ Exp Bot 66:463–470

    Article  Google Scholar 

  • Pruneda-Paz JL, Kay SA (2010) An expanding universe of circadian networks in higher plants. Trends Plant Sci 15:259–265

    Article  CAS  Google Scholar 

  • Qi C-H, Chen M, Song J, Wang B-S (2009) Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa under salinity. Plant Sci 176:200–205

    Article  CAS  Google Scholar 

  • Ramani B, Reeck T, Debez A, Stelzer R, Huchzermeyer B, Schmidt A, Papenbrock J (2006) Aster tripolium L. and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitats. Plant Physiol Biochem 44:395–408

    Article  CAS  Google Scholar 

  • Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta (BBA) Biomembr 1465:17–36

    Article  CAS  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    Article  CAS  Google Scholar 

  • Roden JS, Ball MC (1996) The effect of elevated [CO2] on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits. Plant Physiol 111:909–919

    Article  CAS  Google Scholar 

  • Rozema J et al (2001) UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels. J Photochem Photobiol B 62:108–117

    Article  CAS  Google Scholar 

  • Schäffer AA et al (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  Google Scholar 

  • Sebastiani L, Minnocci A, Tognetti R (2002) Genotypic differences in the response to elevated CO2 concentration of one-year-old olive cuttings (Olea europaea L. cv. Frantoio and Moraiolo) plant biosystems—an international journal dealing with all. Asp Plant Biol 136:199–207

    Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachishypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Silva EN, Ferreira-Silva SL, de Vasconcelos Fontenele A, Ribeiro RV, Viégas RA, Silveira JAG (2010) Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167:1157–1164

    Article  CAS  Google Scholar 

  • Stanley OD (2008) Bio prospecting marine halophyte Salicornia brachiata for medical importance and salt encrusted land development. J Coast Dev 11:62–69

    Google Scholar 

  • Tufan F, Uçarlı C, Gürel F (2015) Analysis of expressed sequence tags from cDNA library of Fusarium culmorum infected barley (Hordeum vulgare L.) roots. Bioinformation 11:34

    Article  Google Scholar 

  • Urban O (2003) Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica 41:9–20

    Article  CAS  Google Scholar 

  • Wang S-M, Zhang J-L, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol 145:559–571

    Article  CAS  Google Scholar 

  • Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12:188

    Article  CAS  Google Scholar 

  • Yi C et al (2015) High atmospheric carbon dioxide-dependent alleviation of salt stress is linked to RESPIRATORY BURST OXIDASE 1 (RBOH1)-dependent H2O2 production in tomato (Solanum lycopersicum). J Exp Bot 66:7391–7404

    Article  CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support (Grant number BT/01/CEIB/09/V/08) from Department of Biotechnology, Government of India is acknowledged. We thank Dr. Vinoth, St. Xavier’s College, Palayamkottai for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Parida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Wojtaszek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 175 KB)

Supplementary material 2 (PDF 160 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjamin, J.J., Krishnasamy, R., Jothiramshekar, S. et al. Identification of salt-induced transcripts by suppression subtractive hybridization and their expression analysis under the combination of salt and elevated CO2 conditions in Salicornia brachiata. Acta Physiol Plant 40, 202 (2018). https://doi.org/10.1007/s11738-018-2764-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2764-y

Keywords

Navigation