Skip to main content

Advertisement

Log in

Transcriptomic analysis and dynamic expression of genes reveal flavonoid synthesis in Scutellaria viscidula

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Scutellaria viscidula Bunge (Labiatae), a perennial herb, is an important medicinal plant that possesses broad pharmacological actions. S. viscidula contains flavonoids with good bioactivities (e.g., baicalin, wogonoside, baicalein, and wogonin) mainly in its dry root, which is used as alternative to Scutellaria baicalensis in the north of China. Furthermore, S. viscidula also has flavones with interesting diverged structures such as panicolin, viscidulin I, viscidulin II, and viscidulin III. Tracing the dynamic process of gene expression will help reveal the mechanism of flavonoid synthesis in S. viscidula, as well as the 4′-deoxyflavone biosynthesis in S. baicalensis. One way is to generate and analyze the expressed sequence tags (ESTs). However, little is known on the transcriptome information of S. viscidula, particularly the key genes involved in flavonoid biosynthesis. In this study, we conducted de novo transcriptome analysis of S. viscidula and obtained 42,310,834 reads and 40,052 unigenes, respectively. We revealed 177 genes relating to flavonoid biosynthesis, where 23 key enzyme-encoding genes including CHS, CHI, F3H, PAL, and 4CL were annotated. Furthermore, we investigated the dynamic expression of SvCHS, SvCHI, SvF3H, SvMYB2, and SvbHLH of stem, root, and leaf of S. viscidula in May, July, and September. Our results showed that these key genes had important regulatory function and exhibited positive correlation with total flavonoid content in different growth stages of S. viscidula. Collectively, this study provides high-quality transcriptome data of S. viscidula, and further gives significant information for understanding the molecular mechanism of gene expression and active ingredients in Scutellaria plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balmer D, Papajewski DV, Planchamp C, Glauser G, Mauch-Mani B (2013) Induced resistance in maize is based on organ-specific defence responses. Plant J 74:213–225

    Article  CAS  PubMed  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  CAS  PubMed  Google Scholar 

  • Baudry A, Caboche M, Lepiniec L (2006) TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J 46:768–779

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Hou K, Qin P, Liu H, Yi B, Yang W, Wu W (2014) RNA-seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes. BMC Genom 15:571

    Article  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreyra MLF, Rius S, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Federica P, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotewold E, Chamberlin M, Snook M, Siame B, Butler L, Swenson J, Maddock S, Clairb GS, Bowen B (1998) Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10:721–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus X domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Guo L, Lei CK, Yang FL, Duan CY, Bai CK (2016) Similarity and diversity evaluation of bioactive ingredients in S. baicalensis and S. viscidula by HPLC. Northwest Pharm J 31:115–118

    Google Scholar 

  • Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J (2010) The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant 3:509–523

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koes RE, Quattrocchio F, Mol JNM (1994) The flavonoid biosynthetic pathway in plants: function and evolution. Bioessays 16:123–132

    Article  CAS  Google Scholar 

  • Krumholz MR, Klein RI, McKee CF, Offner SSR, Cunningham AJ (2009) The formation of massive star systems by accretion. Science 323:754–757

    Article  CAS  PubMed  Google Scholar 

  • Larbat R, Bot JL, Bourgaud F, Robin C, Adamowicz S (2012) Organ-specific responses of tomato growth and phenolic metabolism to nitrate limitation. Plant Biol 14:760–769

    Article  CAS  PubMed  Google Scholar 

  • Lei W, Tang SH, Luo KM, Sun M (2010) Molecular cloning and expression profiling of a chalcone synthase gene from hairy root cultures of Scutellaria viscidula Bunge. Genet Mol Biol 33:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HO (2016) Studies on the chemical components and biological activity of Scutellaria amoena Wright CH. Dissertation, Yunnan University of Traditional Chinese Medicine, China

  • Liu J, Hou J, Jiang C, Li G, Lu H, Meng FY, Shi LC (2015) Deep sequencing of the Scutellaria baicalensis Georgi transcriptome reveals flavonoid biosynthetic profiling and organ-specific gene expression. PloS One 10:e0136397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  CAS  PubMed  Google Scholar 

  • Shang X, He X, He X, Li M, Zhang R, Fan P, Zhang Q, Jia Z (2010) The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol 128:279–313

    Article  CAS  PubMed  Google Scholar 

  • Sheehan H, Moser M, Klahre U, Korinna E, Alexandre DO, Therese M, Sabine M, Michiel V, Loreta F, Cris K (2016) MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation. Nat Genet 48:159–166

    Article  CAS  PubMed  Google Scholar 

  • Vrancken K, Holtappels M, Schoofs H, Deckers T, Treutter D, Valcke R (2013) Erwinia amylovora affects the phenylpropanoid-flavonoid pathway in mature leaves of Pyruscommunis cv. Conférence. Plant Physiol Biochem 72:134–144

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Xu H, Jiang S, Zhang Z, Lu N, Qiu H, Qu C, Wang Y, Wu S, Chen X (2017) MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant J 90:276–292

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi M (2011) Oriental hybrid lily Sorbonne homologue of LhMYB12 regulates anthocyanin biosyntheses in flower tepals and tepal spots. Mol Breed 28:381–389

    Article  CAS  Google Scholar 

  • Yamamoto H (1991) Biotechnology in agriculture and forestry. In: Bajaj YPS (ed) Medicinal and aromatic plants III. Springer, Berlin, pp 398–418

    Google Scholar 

  • Yuan Y, Wu C, Liu Y, Yang J, Huang L (2013) The Scutellaria baicalensis R2R3-MYB transcription factors modulates flavonoid biosynthesis by regulating GA metabolism in transgenic tobacco plants. PloS One 8:e77275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T (2013) The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genom 13:75–98

    Article  CAS  Google Scholar 

  • Zhao Q, Zhang Y, Wang G, Hill L, Weng JK, Chen XY, Xue H, Martin C (2016) A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci Adv 2:e1501780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H, Ren L, Fan X, Tang K, Li B (2017) Identification of putative flavonoid-biosynthetic genes through transcriptome analysis of Taihe Toona sinensis bud. Acta Physiol Plant 39:122

    Article  CAS  Google Scholar 

  • Zhao Q, Cui MY, Levsh O, Yang D, Liu J, Li J, Hill L, Yang L, Hu Y, Weng JK, Chen XY, Martin C (2018) Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4′-deoxyflavones in Scutellaria baicalensis. Mol Plant 11:135–148

    Article  CAS  PubMed  Google Scholar 

  • Zoratti L, Karppinen K, Escobar AL, Häggman H, Jaakola L (2014) Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci 5:534

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers, whose work greatly improve the manuscript. We thank Dr. Yinghua Zha for her helpful revision on the manuscript. This work was supported by the Innovation Team Project of Breeding and Standardized Production of New Varieties of Traditional Chinese Medicine in Fundamental Research Funds of the Central Universities [GK201801008 to CKB]; the National Natural Science Foundation of China [31100241 to CKB]; and the Fundamental Research Funds for the Central Universities [GK201503046 to GSL].

Author information

Authors and Affiliations

Corresponding author

Correspondence to Chengke Bai.

Ethics declarations

Conflict of interest

The authors declared that no competing interests exist.

Additional information

Communicated by M H. Walter.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Xu, J., Cao, B. et al. Transcriptomic analysis and dynamic expression of genes reveal flavonoid synthesis in Scutellaria viscidula. Acta Physiol Plant 40, 161 (2018). https://doi.org/10.1007/s11738-018-2733-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2733-5

Keywords