Skip to main content
Log in

Molecular identification and control of endophytic contamination during in vitro plantlet development of Fagonia indica

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Microbial contamination is the major cause of economic losses in commercial and scientific plant tissue culture laboratories. For successful micropropagation, it is important to control contamination during in vitro cultures. The present study was designed to isolate, identify and eradicate endophytic contaminants from in vitro cultures of medicinally important plant Fagonia indica. A total of eight distinct bacterial isolates from in vitro grown plantlets of F. indica were selected based on analysis of colony morphology. The endophytic bacterial contaminants identified at the species level through 16S rRNA sequence analysis were Enterobacter xiangfangensis, Bacillus vallismortis, Bacillus tequilensis, Terribacillus halophilus, Pantoea dispersa, Serratia marcescens subsp. Sakuensis, Staphylococcus epidermidis and Bacillus atrophaeus. It was observed that almost 60% of seedlings were contaminated with Bacillus sp. and out of those, Bacillus tequelensis contributed to most infections (70% out of the Bacillus infections). The other most frequently occurring bacteria were Bacillus vallismortis, Terribacillus halophilus and Serratia marcescens subsp. sakuensis. Furthermore, the addition of antimicrobials to the media either completely inhibited or drastically decreased the growth of endophytic bacteria as compared to the control in which 92% of the plantlets were contaminated with these endophytes. Nine different antibiotics (rifampicin, teicoplanin, gentamicin, vancomycin, ciprofloxacin, tobramycin, tetracycline, doxycycline and ampicillin) were tested for their activity against the identified endophytes. Antibiotics such as ciprofloxacin and tobramycin showed a good response and inhibited the growth of all the bacterial isolates at low doses compared to the other antibiotics. Tobramycin was the most effective as it inhibited the growth of five of the bacterial isolates at a dosage as low as 4 mg/L. In case of tetracycline (16 mg/L) and doxycycline (64 mg/L), the contamination frequency in plantlets was 25.6 and 45%, respectively. It is, therefore, important to search for more endophytes, causing adverse effects during in vitro cultures and should devise a feasible anti-microbial strategy for controlling such contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

Tariq Khan acknowledges the indigenous Ph.D. fellowship program of Higher Education Commission, Pakistan. Dr. Bilal Haider Abbasi acknowledges financial support from Pakistan Academy of Sciences, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tariq Khan or Bilal Haider Abbasi.

Ethics declarations

Conflict of interest

All the authors (TK, BA, II, MA, and ZK) declare that they have no conflict of interest.

Additional information

Communicated by M. Lambardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T., Abbasi, B.H., Iqrar, I. et al. Molecular identification and control of endophytic contamination during in vitro plantlet development of Fagonia indica. Acta Physiol Plant 40, 150 (2018). https://doi.org/10.1007/s11738-018-2727-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2727-3

Keywords

Navigation