Skip to main content
Log in

Interaction of abscisic acid and auxin on gene expression involved in banana ripening

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Phytohormones regulate numerous aspects of plant growth and development. Green-mature banana fruit were treated with deionized water (control), abscisic acid (ABA), indole-3-acetic acid (IAA) and ABA + IAA, respectively, to investigate the role of ABA and IAA in fruit ripening. Results showed that ABA accelerated fruit ripening, but IAA delayed the process. However, treatment of ABA + IAA showed little difference in fruit color and firmness. The acceleration of ABA and delay of IAA on banana ripening process seems to be neutralized by ABA + IAA. Digital gene expression revealed that ABA + IAA treated fruit maintained the similar color phenotype with the control by regulating the expression of chlorophyll degradation-related gene PaO (GSMUA_Achr6G25590_001), and carotenoid biosynthesis-related genes DXR (GSMUA_Achr3G20790_001) and PSY (GSMUA_Achr2G12480_001, GSMUA_Achr4G17270_001, GSMUA_Achr4G17290_001). Moreover, ABA + IAA treated fruit maintained the similar softening phenotype with the control by adjusting the expression of pectin degradation-related genes PME (GSMUA_Achr3G05740_001) and PL (GSMUA_Achr6G28160_001, GSMUA_Achr7G04580_001). ABA + IAA treatment nearly abolished the action of individual ABA or IAA through equilibrating the expression of specific genes involved in chlorophyll degradation, carotenoid biosynthesis and pectin degradation pathways in the postharvest ripening of banana. The interaction between ABA and IAA might exercise as an antagonistic mechanism of neutralizing the specific gene expression either induced by ABA or reduced by IAA in the postharvest ripening of banana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albersheim P, Darvill AG, O’Neill MA, Schols HA, Voragen AGJ (1996) An hypothesis: the same six polysaccharides are components of the primary cell walls of all higher plants. Pectins and pectinases. Elsevier Sciences B.V., Amsterdam, pp 47–53

    Chapter  Google Scholar 

  • Bapat VA, Trivedi PK, Ghosh A, Sane VA, Ganapathi TR, Nath P (2010) Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol Adv 28:94–107

    Article  CAS  PubMed  Google Scholar 

  • Bottcher C, Boss PK, Davies C (2012) Delaying riesling grape berry ripening with a synthetic auxin affects malic acid metabolism and sugar accumulation, and alters wine sensory characters. Funct Plant Biol 39(9):745–753

    Article  Google Scholar 

  • Cação SM, Leite TF, Budzinski IG, dos Santos TB, Scholz MB, Carpentieri-Pipolo V, Domingues DS, Vieira LG, Pereira LF (2012) Gene expression and enzymatic activity of pectin methylesterase during fruit development and ripening in Coffea arabica L. Genet Mol Res 11(3):3186–3197

    Article  PubMed  Google Scholar 

  • Cao J (2012) The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. PLoS ONE 7(10):e46944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Tan RK, Guo XJ, Fu ZL, Wang Z, Zhang ZY, Tan XL (2015) Transcriptome analysis comparison of lipid biosynthesis in the leaves and developing seeds of Brassica napus. PLoS ONE 10(5):e0126250

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhury SR, Roy S, Sengupta DN (2008) Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit. J Plant Physiol 165(18):1865–1878

    Article  CAS  PubMed  Google Scholar 

  • Christiaens S, Van Buggenhout S, Houben K, Jamsazzadeh Kermani Z, Moelants KR, Ngouémazong ED, Van Loey A, Hendrickx ME (2016) Process-structure-function relations of pectin in food. Crit Rev Food Sci Nutr 56(6):1021–1042

    Article  CAS  PubMed  Google Scholar 

  • Chung DW, Pruzinská A, Hörtensteiner S, Ort DR (2006) The role of pheophorbide a oxygenase expression and activity in the canola green seed problem. Plant Physiol 142(1):88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Song J, Forney C, Palmer LC, Fillmore S, Zhang Z (2016) Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments. Hortic Res 3:16012. https://doi.org/10.1038/hortres

    Article  PubMed  PubMed Central  Google Scholar 

  • Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J (2008) Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J 53(5):717–730

    Article  CAS  PubMed  Google Scholar 

  • Guyer L, Hofstetter SS, Christ B, Lira BS, Rossi M, Hörtensteiner S (2014) Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiol 166(1):44–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y, Ban Q, Hou Y, Meng K, Suo J, Rao J (2016) Isolation and characterization of two persimmon xyloglucan endotransglycosylase/hydrolase (XTH) genes that have divergent functions in cell wall modification and fruit postharvest softening. Front Plant Sci 7:624. https://doi.org/10.3389/fpls.2016.00624 (eCollection)

    PubMed  PubMed Central  Google Scholar 

  • Jaakola L, Pirttilä AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19(2):201–203

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal P, Jha SN, Kaur PP, Bhardwaj R, Singh AK, Wadhawan V (2016) Prediction of textural attributes using color values of banana (Musa sapientum) during ripening. J Food Sci Technol 51(6):1179–1184

    Article  Google Scholar 

  • Jiang Y, Joyce DC, Macnish AJ (2000) Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. J Plant Growth Regul 19(1):106–111

    Article  CAS  PubMed  Google Scholar 

  • Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latche A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an IAA-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J 32:603–613

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    Article  CAS  PubMed  Google Scholar 

  • Leng P, Zhang GL, Li XX, Wang LH, Zheng ZM (2009) Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene encoding a key enzyme during abscisic acid (ABA) biosynthesis and ABA-regulated ethylene production in detached young persimmon calyx. Sci Bull 54(16):2830–2838

    Article  CAS  Google Scholar 

  • Li B, Dewey C (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li JY, Tao XY, Bu JW, Ying TJ, Mao LC, Luo ZS (2017) Global transcriptome profiling analysis of ethylene-auxin interaction during tomato fruit ripening. Postharvest Biol Technol 130:28–38

    Article  CAS  Google Scholar 

  • Liu KD, Kang BC, Jiang H, Moore SL, Li HX, Watkins CB et al (2005) A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Mol Biol 58(4):447–464

    Article  CAS  PubMed  Google Scholar 

  • Lohani Seemi, Trivedi Prabodh K (2004) Pravendra nath.: changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: effect of 1-MCP, ABA and IAA. Postharvest Biol Technol 31:119–126

    Article  CAS  Google Scholar 

  • Ma N, Ma X, Li A, Cao XC, Kong LG (2012) Cloning and expression analysis of wheat pheophorbide a oxygenase gene; TaPaO. Plant Mol Biol Report 30(5):1237–1245

    Article  CAS  Google Scholar 

  • Mittelberger C, Yalcinkaya H, Pichler C, Gasser J, Scherzer G, Erhart T, Schumacher S, Holzner B, Janik K, Robatscher P, Müller T, Kräutler B, Oberhuber M (2017) Pathogen-induced leaf chlorosis: products of chlorophyll breakdown found in degreened leaves of Phytoplasma-infected apple (malus× domestica borkh.) and apricot (Prunus armeniaca L.) trees relate to the pheophorbide a oxygenase/phyllobilin pathway. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.6b05501 (Epub ahead of print)

    PubMed  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17(4):181–195

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sola MÁ, Arbona V, Gómez-Cadenas A, Rodríguez-Concepción M, Rodríguez-Villalón A (2014) A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis. PLoS ONE 9(3):e90765

    Article  PubMed  PubMed Central  Google Scholar 

  • Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241

    Article  CAS  PubMed  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Diretto G, Purgatto E, Danoun S, Zouine M, Li Z et al (2015) Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol 15(1):114

    Article  PubMed  PubMed Central  Google Scholar 

  • Symons GM, Chua YJ, Ross JJ, Quittenden LJ, Davies NW, Reid JB (2012) Hormonal changes during non-climacteric ripening in strawberry. J Exp Bot 63:4741–4750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trainotti L, Tadiello A, Casadoro G (2007) The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308

    Article  CAS  PubMed  Google Scholar 

  • Vendrell M (1985) Effect of abscisic acid and ethephon on several parameters of ripening in banana fruit tissue. Plant Sci 40:19–24

    Article  CAS  Google Scholar 

  • Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Wen B, Ström A, Tasker A, West G, Tucker GA (2013) Effect of silencing the two major tomato fruit pectin methylesterase isoforms on cell wall pectin metabolism. Plant Biol (Stuttg) 15(6):1025–1032

    Article  CAS  Google Scholar 

  • Zhang M, Yuan B, Leng P (2009) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60(6):1579–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu MK, Chen GP, Zhou S, Tu Y, Wang Y, Dong TT et al (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55(1):119–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (31772365) and the National Basic Research Program (973 program) of China (2013CB127101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linchun Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J.-H. Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2018_2621_MOESM1_ESM.tif

Figure S1. Volcano plot showing the number of unigenes significantly differentially expressed in response to exogenous ABA (A), IAA (B) and ABA+IAA (C). Red dots represents up regulated genes, green dots indicates down regulated genes. Supplementary material 1 (TIFF 473 kb)

11738_2018_2621_MOESM2_ESM.tif

Figure S2. H cluster (A) and Venn diagram (B) showing the distribution of differentially-expressed genes that are unique or common among treatments of ABA, IAA and ABA+IAA. Supplementary material 2 (TIFF 179 kb)

Figure S3. Gene Ontology (GO) functional annotation of genes in banana. Supplementary material 3 (TIFF 450 kb)

11738_2018_2621_MOESM4_ESM.xlsx

Table S1. All the enriched GO and genes information of banana peel in response to exogenous ABA and IAA. Supplementary material 4 (XLSX 30 kb)

11738_2018_2621_MOESM5_ESM.xlsx

Table S2. All the enriched KEGG and genes information of banana peel in response to exogenous ABA and IAA. Supplementary material 5 (XLSX 53 kb)

11738_2018_2621_MOESM6_ESM.xls

Table S3. Significant expressed genes involved in pigment metabolism and pectin degradation pathways. Supplementary material 6 (XLS 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Mao, L., Chen, J. et al. Interaction of abscisic acid and auxin on gene expression involved in banana ripening. Acta Physiol Plant 40, 46 (2018). https://doi.org/10.1007/s11738-018-2621-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2621-z

Keywords

Navigation