Skip to main content
Log in

Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Plant cell walls primarily comprise lignin, which performs functions of mechanical support, water transport, and stress responses. Lignin biosynthesis pathway proceeds through metabolic grid featuring complexity and diversity in enzymatic reaction. Cinnamate-4-hydroxylase (C4H, EC 1.14.13.11) is the gene encoding enzyme that catalyzes the second step of phenylpropanoid pathway responsible for biosynthesis of lignin. A full-length cDNA of C4H (designated as GbC4H), which spanned 1816-bp with a 1518-bp open reading frame encoding a 505-amino-acid protein, was cloned from Ginkgo biloba. A GbC4H genomic DNA fragment, spanning 3249-bp, was cloned and found to contain two exons and one intron. GbC4H protein showed high similarities with other plant C4Hs to include conserved domains of cytochrome P450 family. GT-1, W-box, and Myb/Myc recognition sites involved in stress response were detected in a 1265-bp upstream promoter region of GbC4H. Phylogenetic analysis suggested the common evolutionary ancestor shared by plant C4Hs including the gymnosperm enzyme. pET-28a-GbC4H plasmid was constructed and expressed in Escherichia coli strain BL21. Enzymatic assay revealed that recombinant GbC4H protein catalyzes conversion of trans-cinnamic acid to p-coumaric acid. Expression analyses in different organs showed high expression of GbC4H in stems and roots, whereas low expressions was found in fruits, carpopodium, and petioles. Further analysis indicated linear correlation of lignin contents with transcript levels of GbC4H among different tissues. GbC4H transcription was increased by treatments with UV-B, cold, salicylic acid, and abscisic acid, indicating the possible role of GbC4H in response to stresses and hormonal signal. Understanding of GbC4H function could benefit molecular breeding and reinforcement of defense mechanisms in Ginkgo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Achnine L, Blancaflor EB, Rasmussen S et al (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan NH, Selvaraj G, Wei Y et al (2009) Role of lignification in plant defense. Plant Signal Behav 4:158–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J et al (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581

    Article  CAS  PubMed  Google Scholar 

  • Buchel AS, Brederode F, Bol JF et al (1999) Mutation of GT-1 binding sites in the Pr-1A promoter influences the level of inducible gene expression in vivo. Plant Mol Biol 40:387–396

    Article  CAS  PubMed  Google Scholar 

  • Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Biol 49:311–343

    Article  CAS  Google Scholar 

  • Chen AH, Chai YR, Li JN et al (2007) Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). J Biochem Mol Biol 40:247–260

    CAS  PubMed  Google Scholar 

  • Cheng H, Li LL, Xu F et al (2013a) Expression patterns of an isoflavone reductase-like gene and its possible roles in secondary metabolism in Ginkgo biloba. Plant Cell Rep 32:637–650

    Article  CAS  Google Scholar 

  • Cheng H, Li LL, Xu F et al (2013b) Expression patterns of a cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis and environmental stress in Ginkgo biloba. Mol Biol Rep 40:707–721

    Article  CAS  PubMed  Google Scholar 

  • Chiang VL (2006) Monolignol biosynthesis and genetic engineering of lignin in trees, a review. Environ Chem Lett 4:143–146

    Article  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR et al (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Desender S, Andrivon D, Val F (2007) Activation of defence reactions in Solanaceae: where is the specificity. Cell Microbiol 9:21–30

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Lamb CJ, Masoud S et al (1996) Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses—a review. Gene 179:61–71

    Article  CAS  PubMed  Google Scholar 

  • Durst F, Nelson DR (1995) Diversity and evolution of plant P450 and P450-reductases. Drug Metab Drug Interact 12:189–206

    CAS  Google Scholar 

  • Ehlting J, Hamberger B, Million-Rousseau R et al (2006) Cytochromes P450 in phenolic metabolism. Phytochem Rev 5:239–270

    Article  CAS  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C et al (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Komatsu K, Tanaka K et al (2006) An in vitro model for studying vascular injury after laser microdissection. Histochem Cell Biol 125:509–514

    Article  CAS  PubMed  Google Scholar 

  • Gross GG (1981) The biochemistry of lignification. Adv Bot Res 8:25–63

    Article  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Biol 40:347–369

    Article  CAS  Google Scholar 

  • Hamann T, Bennett M, Mansfield J et al (2009) Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant J 57:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Hano C, Addi M, Bensaddek L, Crônier D et al (2006) Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta 223:975–989

    Article  CAS  PubMed  Google Scholar 

  • Himmel ME (2008) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell, Oxford, pp 1–6

    Book  Google Scholar 

  • Hotze M, Schröder G, Schröder J (1995) Cinnamate 4-hydroxylase from Catharanthus roseus and a strategy for the functional expression of plant cytochrome P450 proteins as translational fusions with P450 reductase in Escherichia coli. FEBS Lett 374:345–350

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Duan Y, Yi B et al (2008) Characterization and expression profiling of cinnamate 4-hydroxylase gene from Salvia miltiorrhiza in rosmarinic acid biosynthesis pathway. Russ J Plant Physiol 55:390–399

    Article  CAS  Google Scholar 

  • Jaakola L, Määttä-Riihinen K, Kärenlampi S et al (2004) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728

    Article  CAS  PubMed  Google Scholar 

  • Janská A, Aprile A, Zámečník J et al (2011) Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct Integr Genom 11:307–325

    Article  CAS  Google Scholar 

  • Kadioglu A, Saruhan N, Sağlam A et al (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27–37

    Article  CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Fatma M, Per TS et al (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Kim YH, Bae JM, Huh GH (2010) Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweetpotato in response to plant developmental stage and environmental stress. Plant Cell Rep 29:779–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Choi B, Natarajan S et al (2013) Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses. Plant Omics 6:65–72

    CAS  Google Scholar 

  • Kirk TK, Obst JR (1988) Lignin determination. Method Enzymol 161:87–101

    Article  CAS  Google Scholar 

  • Kochs G, Grisebach H (1989) Phytoalexin synthesis in soybean: purification and reconstitution of cytochrome P450 3, 9-dihydroxypterocarpan 6a-hydroxylase and separation from cytochrome P450 cinnamate 4-hydroxylase. Arch Biochem Biophys 273:543–553

    Article  CAS  PubMed  Google Scholar 

  • Kong JQ, Lu D, Wang ZB (2014) Molecular cloning and yeast expression of cinnamate 4-hydroxylase from Ornithogalum saundersiae baker. Molecules 19:1608–1621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Omer S, Chitransh S et al (2012) Cinnamate 4-hydroxylase downregulation in transgenic tobacco alters transcript level of other phenylpropanoid pathway genes. Int J Adv Biotechnol Res 3:545–557

    CAS  Google Scholar 

  • Kumar S, Omer S, Patel K et al (2013) Cinnamate 4-hydroxylase (C4H) genes from Leucaena leucocephala: a pulp yielding leguminous tree. Mol Biol Rep 40:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    Article  CAS  PubMed  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Biol 41:455–496

    Article  CAS  Google Scholar 

  • Liu S, Hu Y, Wang X et al (2009) Isolation and characterization of a gene encoding cinnamate 4-hydroxylase from Parthenocissus henryana. Mol Biol Rep 36:1605–1610

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Zhou Y, Li L et al (2006) Distinct roles of cinnamate 4-hydroxylase genes in Populus. Plant Cell Physiol 47:905–914

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M, Ohta D, Sato R (1997) Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol 113:755–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura JCMS, Bonine CAV, De Oliveira Fernandes Viana J (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina MA, Zhao Q, Gallegogiraldo L et al (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nedelkina S, Jupe SC, Blee KA et al (1999) Novel characteristics and regulation of a divergent cinnamate 4-hydroxylase (CYP73A15) from French bean: engineering expression in yeast. Plant Mol Biol 39:1079–1090

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Schuler MA, Paquette SM et al (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peirats-Llobet M, Han SK, Gonzalez-Guzman M et al (2016) A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol Plant 9:136–147

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomar F, Novo M, Bernal MA et al (2004) Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytol 163:111–123

    Article  CAS  PubMed  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY et al (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  CAS  PubMed  Google Scholar 

  • Ralph J, Lundquist K, Brunow G et al (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  • Rani A, Singh K, Ahuja PS (2012) Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene 495:205–210

    Article  CAS  PubMed  Google Scholar 

  • Redman J, Whitcraft J, Johnson C et al (2002) Abiotic and biotic stress differentially stimulate as-1 element activity in Arabidopsis. Plant Cell Rep 21:180–185

    Article  CAS  Google Scholar 

  • Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134:1718–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ro DK, Douglas CJ (2004) Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae) implications for control of metabolic flux into the phenylpropanoid pathway. J Biol Chem 279:2600–2607

    Article  CAS  PubMed  Google Scholar 

  • Ro DK, Mah N, Ellis BE et al (2001) Functional characterization and subcellular localization of poplar (Populus trichocarpa × Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol 126:317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharkhiz MJ, Mohammadi S, Javanmardi J (2011) Salicylic acid changes physio-morphological traits and essential oil content of catnip (Nepeta cataria L.). J Med Spice Plants 16:75–77

    CAS  Google Scholar 

  • Salvador VH, Lima RB, dos Santos WD et al (2013) Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS One 8:e69105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkanen KV, Ludwig CH (1971) Lignins. Occurrence, formation, structure, and reactions. Wiley, New York

    Google Scholar 

  • Schilmiller AL, Stout J, Weng JK (2009) Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J 60:771–782

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101

    Article  CAS  PubMed  Google Scholar 

  • Schoch GA, Attias R, Le Ret M et al (2003) Key substrate recognition residues in the active site of a plant cytochrome P450, CYP73A1. FEBS J 270:3684–3695

    CAS  Google Scholar 

  • Shao HB, Guo QJ, Chu LY et al (2007) Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloid Surface B 54:37–45

    Article  CAS  Google Scholar 

  • Singh K, Kumar S, Rani A et al (2009) Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct Integr Genom 9:125–134

    Article  CAS  Google Scholar 

  • Smith JV, Luo Y (2004) Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 64:465–472

    Article  CAS  PubMed  Google Scholar 

  • Sykes RW, Gjersing EL, Foutz K et al (2015) Down-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla × E. grandis leads to improved sugar release. Biotechnol Biofuels 8:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szczesnaskorupa E, Straub P, Kemper B (1993) Deletion of a conserved tetrapeptide, PPGP, in P450 2C2 results in loss of enzymatic activity without a change in its cellular location. Arch Biochem Biophys 304:170–175

    Article  CAS  Google Scholar 

  • Tabata M (1996) The mechanism of shikonin biosynthesis in Lithospermum cell cultures. Plant Tissue Culture Lett 13:117–125

    Article  CAS  Google Scholar 

  • Tao S, Khanizadeh S, Zhang H et al (2009) Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Sci 176:413–419

    Article  CAS  Google Scholar 

  • Terashima N, Kitano K, Kojima M et al (2009) Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J Wood Sci 55:409–416

    Article  CAS  Google Scholar 

  • Teutsch HG, Hasenfratz MP, Lesot A et al (1993) Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl Acad Sci USA 90:4102–4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohge T, Watanabe M, Hoefgen R et al (2013) The evolution of phenylpropanoid metabolism in the green lineage. Crit Rev Biochem Mol 48:123–152

    Article  CAS  Google Scholar 

  • Van Beek TA (2002) Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 967:21–55

    Article  PubMed  Google Scholar 

  • Vanholme R, Morreel K, Ralph J et al (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    Article  CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Wei HUI, Dhanaraj AL, Arora R et al (2006) Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. Plant Cell Environ 29:558–570

    Article  CAS  PubMed  Google Scholar 

  • Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257

    Article  CAS  PubMed  Google Scholar 

  • Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  CAS  PubMed  Google Scholar 

  • Weng JK, Li X, Bonawitz ND (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172

    Article  CAS  PubMed  Google Scholar 

  • Werck-Reichhart D, Batard Y, Kochs G (1993) Monospecific polyclonal antibodies directed against purified cinnamate 4-hydroxylase from Helianthus tuberosus (immunopurification, immunoquantitation, and interspecies cross-reactivity). Plant Physiol 102:1291–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Cheng H, Cai R (2008) Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Mol Cell 26:536–547

    CAS  Google Scholar 

  • Xu Z, Zhang D, Hu J (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinform 10:S3

    Article  CAS  Google Scholar 

  • Xu H, Park NI, Li X et al (2010) Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Bioresour Technol 101:9715–9722

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Ning YJ, Zhang WW et al (2014) An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba. Funct Integr Genom 14:177–189

    Article  CAS  Google Scholar 

  • Yamazaki S, Sato K, Suhara K (1993) Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem 114:652–657

    Article  CAS  PubMed  Google Scholar 

  • Yang DH, Chung BY, Kim JS (2005) cDNA cloning and sequence analysis of the rice cinnamate-4-hydroxylase gene, a cytochrome P450-dependent monooxygenase involved in the general phenylpropanoid pathway. J Plant Biol 48:311–318

    Article  CAS  Google Scholar 

  • Yeh TF, Yamada T, Capanema E (2005) Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy. J Agric Food Chem 53:3328–3332

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Zhao S, Yang S (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 31370680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xu.

Additional information

Communicated by A Chandra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Yan, J., Meng, X. et al. Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba . Acta Physiol Plant 40, 7 (2018). https://doi.org/10.1007/s11738-017-2585-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2585-4

Keywords