Skip to main content
Log in

Functional micromorphology of petals of Chaenomeles japonica exposed to humid and cold season

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In this study, micro- and nano-traits of petal epidermises of flowers of Chaenomeles japonica extended under environmental conditions, during the humid and cold period of the year, are presented. The outer (abaxial) and the inner (adaxial) epidermises of petals of C. japonica consist of convex and papillae cells, respectively, that are covered by epicuticular wrinkled relief further ornamented by submicron motifs, forming interfaces between floral tissues and environment. Structural epidermal features of the petal relief at the nanoscale level reveal different functionality on the two sides of the corolla. The cuticular folds of convex epidermal cells display declining water retention on the outer petal surface and the exposed side of the corolla to the environmental conditions. The cuticular folds of papillae epidermal cells increase in size the inner petal surface, in comparison with the outer surface; such traits facilitate light absorption and enhanced the contact area among folds and curvatures at the inner side of the corolla. It appears that nanometric surface structures of petals may be important adaptive features of C. japonica flowers, contributing to their performance in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Akšić MF, Tosti T, Nedić N, Marković M, Ličina V, Milojković-Opsenica D, Tešić Ž (2015) Influence of frost damage on the sugars and sugar alcohol composition in quince (Cydonia oblonga Mill.) floral nectar. Acta Physiol Plant 37:1–11

    Article  Google Scholar 

  • Argiropoulos A, Rhizopoulou S (2012) Micromorphology of petals of the invasive weed Oxalis pes-caprae. Weed Biol Manag 12:47–52

    Article  Google Scholar 

  • Bartish IV, Garkava LP, Rumpunen K, Nybom H (2000) Phylogenetic relationships and differentiation among and within populations of Chaenomeles Lindl. (Rosaceae) estimated with RAPDs and isozymes. Theor Appl Genet 101:554–563

    Article  CAS  Google Scholar 

  • Bergougnoux V, Caissard JC, Jullien F, Magnard JL, Scalliet G, Cock JM, Hugueney P, Baudino S (2007) Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta 226:853–866

    Article  CAS  PubMed  Google Scholar 

  • Campbell CS, Donoughue MJ, Baldwin BG, Wojciechowski MF (1995) Phylogenetic relationships in Maloideae (Rosaceae): evidence from sequences of the internal transcribed spacers of nuclear ribosomal DNA and its congruence with morphology. Am J Bot 82:903–918

    Article  CAS  Google Scholar 

  • Chang E (2016) Chinese flowers and the idea of cultivation in early-nineteenth-century British World and image. Eur Romant Rev 27:9–24

    Article  Google Scholar 

  • Christensen KI (1998) Typification of some Maloideae (Rosaceae) commonly cultivated in Norden. Nord J Bot 18:701–703

    Article  Google Scholar 

  • da Costa S, Bastos V, de Mendonça Pimentel RM, Chagas MDGSD, Alves GD, de Castro CC (2017) Petal micromorphology and its relationship to pollination. Plant Biol 19:115–122

    Article  CAS  PubMed  Google Scholar 

  • Denisow B (2002) The blooming and melliferous value of tristilous flowers of Japanese quince (Chaenomeles japonica Lindl.). J Apic Sci 46:15–22

    Google Scholar 

  • Domínguez E, Heredia-Guerrero JA, Heredia A (2011) The biophysical design of plant cuticles: an overview. New Phytol 189:938–949

    Article  PubMed  Google Scholar 

  • Gale RM, Owens SJ (1983) Cell distribution and surface morphology in petals, androecia and styles of Commelinaceae. Bot J Linn Soc 87:247–262

    Article  Google Scholar 

  • Gkikas D, Argiropoulos A, Rhizopoulou S (2015) Epidermal focusing of light and modelling of reflectance in floral-petals with conically shaped epidermal cells. Flora 212:38–45

    Article  Google Scholar 

  • Hafez-Taghva P, Zamzad M, Khalafi L (2016) Total flavonoid content and essential oil composition of Chaenomeles japonica (Thunb.) Lindl. ex Spach from North of Iran. IJNPR 7:90–92

    Google Scholar 

  • Hebda RJ, Chinnappa CC (1994) Studies on pollen morphology of Rosaceae. Acta Bot Gallica 141:183–193

    Article  Google Scholar 

  • Hepper FN (1975) Cultivated plants in flower outside at Kew in early January. Kew Bull 30:699–705

    Article  Google Scholar 

  • Hünig R, Mertens A, Stephan M, Schulz A, Richter B, Hetterich M, Powalla M, Lemmer U, Colsmann A, Gomard G (2016) Flower power: exploiting plants’ epidermal structures for enhanced light harvesting in thin-film solar cells. Adv Opt Mater 4:1487–1493

    Article  Google Scholar 

  • Kaneko Y, Nagaho I, Bang SW, Matsuzawa Y (2000) Classification of flowering quince cultivars (genus Chaenomeles) using random amplified polymorphic DNA markers. Breed Sci 50:139–142

    Article  CAS  Google Scholar 

  • Kaufmane E, Rumpunen K (2002) Pollination, pollen tube growth and fertilization in Chaenomeles japonica (Japanese quince). Sci Hortic 94:257–271

    Article  Google Scholar 

  • Kavalagios P (2000) Development of a database accessible from the web for the meteorological station of NTUA. Dissertation, National Technical University of Athens

  • Kay QON, Daoud HS, Stirton CH (1981) Pigment distribution, light reflection and cell structure in petals. Bot J Linn Soc 83:57–83

    Article  CAS  Google Scholar 

  • Lagorio MG (2013) Understanding the role of pigments in flowers. Environ Res J 7:248–265

    Google Scholar 

  • Lee D (2007) Nature’s palette: the science of plant color. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Ma Y, Sun J (2009) Humido-and thermo-responsive free-standing films mimicking the petals of the morning glory flower. Chem Mater 21:898–902

    Article  CAS  Google Scholar 

  • MacGregor-Ramiasa MN, Vasilev K (2017) Questions and answers on the wettability of nano-engineered surfaces. Adv Mater Interfaces 4:1700381

    Article  Google Scholar 

  • Martens P (1936) Reserches sur la cuticule. IV. Le relief cuticulaire et la differenciation epidermique des organs floraux. Cellule 43:289–320

    Google Scholar 

  • McKee J, Richards AJ (1998) Effect of flower structure and flower colour on intrafloral warming and pollen germination and pollen-tube growth in winter flowering Crocus L. (Iridaceae). Bot J Linn Soc 128:369–384

    Google Scholar 

  • Medina-Velo IA, Adisa I, Tamez C, Peralta-Videa JR, Gardea-Torresdey JL (2017) Effects of surface coating on the bioactivity of metal-based engineered nanoparticles: lessons learned from higher plants. In: Yan B, Zhou H, Gardea-Torresdey JL (eds) Bioactivity of engineered nanoparticles. Springer, Singapore, pp 43–61

    Chapter  Google Scholar 

  • Mihova T, Kondakova V, Mondeshka P (2012) Investigations of Chaenomeles japonica (Thunb.) in the region of Central Balkans. Banat’s J Biotechnol 3:43–48

    Article  Google Scholar 

  • Miller R, Owens SJ, Rørslett B (2011) Plants and colour: flowers and pollination. Opt Laser Technol 43:282–294

    Article  CAS  Google Scholar 

  • Mortier C, Darmanin T, Guittard F (2016) 3, 4-Dialkoxypyrrole for the formation of bioinspired rose petal-like substrates with high water adhesion. Langmuir 32:12476–12487

    Article  CAS  PubMed  Google Scholar 

  • Nelson EC (1999) So many really fine plants—an epitome of Japanese plants in Western European gardens. Curtis’s Bot Mag 16:52–68

    Article  Google Scholar 

  • Nine MJ, Tung TT, Alotaibi F, Tran DN, Losic D (2017) Facile adhesion-tuning of superhydrophobic surfaces between “lotus” and “petal” effect and their influence on icing and deicing properties. ACS Appl Mater Interfaces 9:8393–8402

    Article  CAS  PubMed  Google Scholar 

  • Phipps JB, Robertson KR, Smith PG, Rohrer JR (1990) A checklist of the subfamily Maloideae (Rosaceae). Can J Bot 68:2209–2269

    Article  Google Scholar 

  • Polymeni R, Spanakis E, Argiropoulos A, Rhizopoulou S (2010) Aspects on the relief of living surfaces using atomic force microscopy allow “art” to imitate nature. Integr Zool 5:218–225

    Article  PubMed  Google Scholar 

  • Ponder A, Hallmann E (2017) Comparative evaluation of the nutritional value and the content of bioactive compounds in the fruit of individual species of chaenomeles and quince. World Sci News 73:101–108

    Google Scholar 

  • Rhizopoulou S, Spanakis E, Argiropoulos A (2015) Study of petal topography of Lysimachia arvensis grown under natural conditions. Acta Bot Gallica 162:355–364

    Article  Google Scholar 

  • Rohrer JR, Robertson KR, Phipps JB (1994) Floral morphology of Maloideae (Rosaceae) and its systematic relevance. Am J Bot 81:574–581

    Article  Google Scholar 

  • Rumpunen K, Kviklys D (2003) Combining ability and patterns of inheritance for plant and fruit traits in Japanese quince (Chaenomeles japonica). Euphytica 132:139–149

    Article  Google Scholar 

  • Rumpunen K, Trajkovski V, Bartish I, Laencina J, Ros JM, Jordan MJ, Hellin P, Tigerstedt PMA, Kauppinen S, Thibault JF (2000) Domestication of Japanese quince (Chaenomeles japonica). Acta Hortic 538:345–348

    Article  Google Scholar 

  • Sulborska A, Weryszko-Chmielewska E, Chwil M (2012) Micromorphology of Rosa rugosa Thunb. petal epidermis secreting fragrant substances. Acta Agrobot 65:21–28

    Article  Google Scholar 

  • Taneda H, Watanabe-Taneda A, Chhetry R, Ikeda H (2015) A theoretical approach to the relationship between wettability and surface microstructures of epidermal cells and structured cuticles of flower petals. Ann Bot 115:923–937

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarko T, Duda-Chodak A, Satora P, Sroka P, Pogoń P, Machalica J (2014) Chaenomeles japonica, Cornus mas, Morus nigra fruits characteristics and their processing potential. J Food Sci Technol 51:3934–3941

    Article  CAS  PubMed  Google Scholar 

  • Telford AM, Hawkett BS, Such C, Neto C (2013) Mimicking the wettability of the rose petal using self-assembly of waterborne polymer particles. Chem Mater 25:3472–3479

    Article  CAS  Google Scholar 

  • The Plant List (2011) www.theplantlist.org/tpl1.1/record/rjp-7342. Accessed 18 Oct 2011

  • Thomas M, Crépeau MJ, Rumpunen K, Thibault JF (2000) Dietary fibre and cell-wall polysaccharides in the fruits of Japanese quince (Chaenomeles japonica). Lebensm Wiss Technol 33:24–131

    Article  Google Scholar 

  • Thomas M, Guillemin F, Guillon F, Thibault JF (2003) Pectins in the fruits of Japanese quince (Chaenomeles japonica). Carbohydr Polym 53:361–372

    Article  CAS  Google Scholar 

  • Thunberg CP (1794) Botanical observations on the Flora Japonica. Trans Linn Soc 2:326–342

    Article  Google Scholar 

  • Uno H (2017) Emily Dickinson and Japanese flowers: her herbarium and Perry’s expedition to Japan. Emily Dickinson J 26:51–79

    Article  Google Scholar 

  • Wagner P, Fürstner R, Barthlott W, Neinhuis C (2003) Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J Exp Bot 54:1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Weber C (1964) The genus Chaenomeles (Rosaceae). J Arnold Arbor 45:161–205

    Google Scholar 

  • Xiang Y, Huang CH, Hu Y, Wen J, Li S, Yi T, Chen H, Xiang J, Ma H (2016) Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol Biol Evol 34:262–281

    PubMed Central  Google Scholar 

  • Yuan C, Huang M, Yu X, Ma Y, Luo X (2016) A simple approach to fabricate the rose petal-like hierarchical surfaces for droplet transportation. Appl Surf Sci 385:562–568

    Article  CAS  Google Scholar 

  • Zheng L, Chen H, Zhang L, Zang DK (2008) Pollen morphology and cultivar classification of the genus Chaenomeles. Sci Silvae Sin 44:53–57

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from PENED Grant ED174 co-financed by the European Social Fund and the Greek Ministry of Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Rhizopoulou.

Additional information

Communicated by B. Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argiropoulos, A., Spanakis, E. & Rhizopoulou, S. Functional micromorphology of petals of Chaenomeles japonica exposed to humid and cold season. Acta Physiol Plant 39, 246 (2017). https://doi.org/10.1007/s11738-017-2542-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2542-2

Keywords

Navigation