Characterization of ERF76 promoter cloned from Populus simonii × P. nigra

Abstract

The poplar transcription factor ERF76 gene is salt-inducible and plays an important role in regulating stress-related genes. To understand the regulatory mechanisms of ERF76 gene, the 1537-bp upstream DNA sequence of ERF76 gene was cloned from di-haploid Populus simonii × P. nigra. Sequence analysis indicated that the fragment contains a series of regulatory elements related to defense and stress responsiveness. The protein–DNA interaction assay indicated that the sequence interacted with proteins involved in oxidoreductase activity and plant defense and stress response. Biological evidence from promoter segmentation and deletion analysis demonstrated that the promoter segments in different length possess different transcriptional activity and respond to salt stress differentially in transgenic Arabidopsis. The characterization of ERF76 promoter provides mechanistic understanding of ERF76 gene in salt stress responses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aken OV, Zhang BT, Law S, Narsai R, Whelan J (2013) AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiol 162:254–271

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aoki H, Teramura H, Schepetilnikov M, Ryabova LA, Kusano H, Shimada H (2014) Enhanced translation of the downstream ORF attributed to a long 5′ untranslated region in the OsMac1 gene family members, OsMac2 and OsMac3. Plant Biotechnol 31:221–228

    CAS  Article  Google Scholar 

  3. Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132:988–998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  PubMed  Google Scholar 

  5. Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Després C, Martin GB (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R (2006) Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol 123:1–12

    CAS  Article  PubMed  Google Scholar 

  7. Devi S, Chen X, Oliver DJ, Xiang C (2006) A novel high-throughput genetic screen for stress-responsive mutants of Arabidopsis thaliana reveals new loci involving stress responses. Plant J 47:652–663

    CAS  Article  Google Scholar 

  8. Filichkin SA, Leonard JM, Alvaro M, Po-Pu L, Hiroyuki N (2004) A novel endo-β-mannanase gene in tomato leman5 is associated with anther and pollen development. Plant Physiol 134:1080–1087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Graham RT, Iain WM, John FG, Philip MG (2002) Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding characteristics. Plant Mol Biol 50:43–57

    Article  PubMed  Google Scholar 

  10. He Y, Li W, Lv J, Jia YB, Wang MC, Xia GM (2011) Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot 63:1511–1522

    Article  PubMed  Google Scholar 

  11. Hehl R, Wingender E (2001) Database-assisted promoter analysis. Trends Plant Sci 6:251–255

    CAS  Article  PubMed  Google Scholar 

  12. Hernandez-Garcia CM, Bouchard RA, Rushton PJ et al (2010) High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC Plant Biol 10:1–16

    Article  Google Scholar 

  13. Horstmann V, Huether CM, Jost W, Reski R, Decker EL (2004) Quantitative promoter analysis in Physcomitrella patens: a set of plant vectors activating gene expression within three orders of magnitude. BMC Biotechnol 4:1–13

    Article  Google Scholar 

  14. Hou L, Chen LJ, Wang JY, Xu DF, Dai LX, Zhang H, Zhao YX (2012) Construction of stress responsive synthetic promoters and analysis of their activity in transgenic Arabidopsis thaliana. Plant Mol Biol Rep 30:1496–1506

    CAS  Article  Google Scholar 

  15. Jeanette MQ, Paola B, Mats E, Sabeeha M (2000) Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in chlamydomonas is mediated by the same element. J Biol Chem 275:6080–6089

    Article  Google Scholar 

  16. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Article  Google Scholar 

  17. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-Glucuronidase as a sensitive and versatile gene marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Karthikeyan AS, Ballachanda DN, Raghothama KG (2009) Promoter deletion analysis elucidates the role of cis elements and 5′UTR intron in spatiotemporal regulation of AtPht1; 4 expression in Arabidopsis. Physiol Plant 136:10–18

    CAS  Article  PubMed  Google Scholar 

  19. Kim Y, Lee G, Jeon E et al (2014) The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. Nucleic Acids Res 42:485–498

    CAS  Article  PubMed  Google Scholar 

  20. Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Li ZM, Yang YJ, Yang F et al (2010) Cloning of LeGRP2 promoter from tomato that shows root-specific expression in Arabidopsis. Sci Agric Sin 43:1877–1882

    CAS  Google Scholar 

  22. Liu Y, Yin J, Xiao M et al (2013) Characterization of structure, divergence and regulation patterns of plant promoters. J Mol Biol Res 3:1885–1896

    Article  Google Scholar 

  23. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Yoon HW (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S (2001) Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276:73–81

    CAS  Article  PubMed  Google Scholar 

  25. Plesch G, Ehrhardt T, Mueller-Roeber B (2001) Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. Plant J 28:455–464

    CAS  Article  PubMed  Google Scholar 

  26. Qin X, Zheng X, Shao C et al (2009) Stress-induced curcin-L promoter in leaves of Jatropha curcas L. and characterization in transgenic tobacco. Planta 230:387–395

    CAS  Article  PubMed  Google Scholar 

  27. Qiu P (2003) Recent advances in computational promoter analysis in understanding the transcriptional regulatory network. Biochem Biophys Res Commun 309:495–501

    CAS  Article  PubMed  Google Scholar 

  28. Sawant SV, Kiran K, Mehrotra R, Chaturvedi CP, Ansari SA, Singh P, Tuli R (2005) A variety of synergistic and antagonistic interactions mediated by cis-acting DNA motifs regulate gene expression in plant cells and modulate stability of the transcription complex formed on a basal promoter. J Exp Bot 56:2345–2353

    CAS  Article  PubMed  Google Scholar 

  29. Sharma N, Russell SD, Bhalla PL, Singh MB (2011) Putative cis-regulatory elements in genes highly expressed in rice sperm cells. BMC Res Notes 4:319

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Shashikanth M, Krishna AR, Ramya G, Devi G, Ulaganathan K (2008) Genome-wide comparative analysis of Oryza sativa (japonica) and Arabidopsis thaliana 5'-UTR sequences for translational regulatory signals. Plant Biotechnol 25(6):553–563

    CAS  Article  Google Scholar 

  31. Smieszek SP, Yang H, Paccanaro A et al (2014) Progressive promoter element combinations classify conserved orthogonal plant circadian gene expression modules. J R Soc Interface. doi:10.1098/rsif.2014.0535

    PubMed  PubMed Central  Google Scholar 

  32. Taha RS, Ismail I, Zainal Z, Akmar Abdullah SN (2012) The stearoyl-acyl-carrier-protein desaturase promoter (Des) from oil palm confers fruit-specific GUS expression in transgenic tomato. J Plant Physiol 169:1290–1300

    Article  Google Scholar 

  33. Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E (2005) Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol 138:757–766

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Kazuo S, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Venter M, Botha FC (2004) Promoter analysis and transcription profiling: integration of genetic data enhances understanding of gene expression. Physiol Plant 120:74–83

    CAS  Article  PubMed  Google Scholar 

  36. Xu ZS, Ni ZY, Liu L et al (2008) Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genom 280:497–508

    CAS  Article  Google Scholar 

  37. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    CAS  Article  PubMed  Google Scholar 

  38. Yao WJ, Wang SJ, Zhou BR, Jiang TB (2016a) Transgenic poplar overexpressing endogenous transcription factor ERF76 gene improves salinity tolerance. Tree Physiol 36:896–908

    Article  PubMed  Google Scholar 

  39. Yao WJ, Wang L, Zhou BR, Wang SJ, Li RH, Jiang TB (2016b) Over-expression of poplar transcription factor gene ERF76 confers salt tolerance in transgenic tobacco. J Plant Physiol 198:23–31

    CAS  Article  PubMed  Google Scholar 

  40. Yao WJ, Zhang XM, Zhou BR, Zhao K, Li RH, Jiang TB (2017) Expression pattern of ERF gene family under multiple abiotic stresses in Populus simonii × P. nigra. Frontiers. Plant Sci 8:181. doi:10.3389/fpls.2017.00181

    Google Scholar 

  41. Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    CAS  Article  PubMed  Google Scholar 

  42. Zhang J, Zhang X, Wang Y, Hou H, Qian Y (2012) Characterization of sequence elements from malvastrum yellow vein betasatellite regulating promoter activity and DNA replication. Virol J 9:598–604

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31570659) and the 111 project (B16010).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tingbo Jiang.

Additional information

Communicated by Z.-L. Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Wang, S., Zhou, B. et al. Characterization of ERF76 promoter cloned from Populus simonii × P. nigra . Acta Physiol Plant 39, 249 (2017). https://doi.org/10.1007/s11738-017-2539-x

Download citation

Keywords

  • Poplar
  • Promoter
  • Protein–DNA interactions
  • Salt stress
  • cis-Elements