Skip to main content
Log in

Variation in freezing tolerance, water content and carbohydrate metabolism of floral buds during deacclimation of contrasting blackcurrant cultivars

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

As a result of climate change, temperature patterns are expected to become increasingly irregular with longer and more frequent episodes of unseasonable warm spells during the winter season. Warm spells may promote premature loss of freezing tolerance and bud burst in woody perennials, thereby increasing the risk of tissue damage by subsequent frosts. This study investigated the variation in kinetics of deacclimation and bud break and associated changes in carbohydrate metabolism and water status in floral buds of six blackcurrant (Ribes nigrum) cultivars in response to a simulated warm spell (16/11 °C day/night). In three of the cultivars, the rate of deacclimation showed an almost logarithmic course, whereas the other three cultivars exhibited greater deacclimation resistance and a sigmoid deacclimation pattern. The timing and rate of bud development, and their relationship with deacclimation varied greatly amongst cultivars, indicating genotypic variation in time-dependent responses of freezing tolerance and bud break to warm temperatures. In all six cultivars, deacclimation and growth resumption were strongly associated with rehydration. In contrast, changes in carbohydrate metabolism were mostly associated with deacclimation. Evaluation of phenological responses of the same cultivars under field conditions showed that cultivars which were fast flushing in response to an experimental warm spell also exhibited early bud break under natural conditions, indicating that cultivar differences in phenological responses are consistent under different temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Améglio T, Cochard H, Ewers FW (2001) Stem diameter variations and cold hardiness in walnut trees. J Exp Bot 52(364):2135–2142

    Article  PubMed  Google Scholar 

  • Andersen UB, Kjaer KH, Erban A, Alpers J, Hincha DK, Kopka J, Zuther E, Pagter M (2017) Impact of seasonal warming on overwintering and spring phenology of blackcurrant. Environ Exp Bot 140:96–109

    Article  Google Scholar 

  • Arora R, Rowland LJ, Ogden EL, Dhanaraj AL, Marian CO, Ehlenfeldt MK, Vinyard B (2004) Dehardening kinetics, bud development, and dehydrin metabolism in blueberry cultivars during deacclimation at constant, warm temperatures. J Am Soc Hortic Sci 129(5):667–674

    CAS  Google Scholar 

  • Atkinson CJ, Brennan RM, Jones HG (2013) Declining chilling and its impact on temperate perennial crops. Environ Exp Bot 91:48–62

    Article  Google Scholar 

  • Brennan RM (2006) Currants and gooseberries Ribes species Saxifragaceae. In: Janick J (ed) Encyclopedia of fruit and nut crops. CABI, Cambridge, MA

  • Castède S, Campoy JA, García JQ, Dantec L, Lafargue M, Barreneche T, Wenden B, Dirlewanger E (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. New Phytol 202(2):703–715

    Article  PubMed  Google Scholar 

  • Charrier G, Bonhomme M, Lacointe A, Améglio T (2011) Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? Int J Biometeorol 55(6):763–774

    Article  PubMed  Google Scholar 

  • Charrier G, Poirier M, Bonhomme M, Lacointe A, Améglio T (2013) Frost hardiness in walnut trees (Juglans regia L.): How to link physiology and modelling? Tree Physiol 33(11):1229–1241

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Fuchigami LH (2002) Growth of young apple trees in relation to reserve nitrogen and carbohydrates. Tree Physiol 22:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 126(4):447–460

    Article  PubMed  Google Scholar 

  • Citadin I, Raseira MC, Herter FG, da Silva JB (2001) Heat requirement for blooming and leafing in peach. HortScience 36(2):305–307

    Google Scholar 

  • Cox SE, Stushnoff C (2001) Temperature-related shifts in soluble carbohydrate content during dormancy and cold acclimation in Populus tremuloides. Can J Forest Res 31(4):730–737

    Article  CAS  Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60(1):73–103

    Article  CAS  PubMed  Google Scholar 

  • Dale A (1987) Some studies in spring frost tolerance in black currants (Ribes nigrum L.). Euphytica 36(3):775–781

    Article  Google Scholar 

  • Dhuli P, Rohloff J, Strimbeck GR (2014) Metabolite changes in conifer buds and needles during forced bud break in Norway spruce (Picea abies) and European silver fir (Abies alba). Front Plant Sci 5:706

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinno A (2016) dunn’s.test: Dunn’s test of multiple comparisons using rank sums. R package: version 1.3.2

  • Ferguson JC, Tarara JM, Mills LJ, Grove GG, Keller M (2011) Dynamic thermal time model of cold hardiness for dormant grapevine buds. Ann Bot Lond 107(3):389–396

    Article  Google Scholar 

  • Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, Firth D, Friendly M, Gorjanc G, Graves S, Heiberger R, Laboissiere R, Monette G (2016) car: companion to applied regression. R package: version 2.1-4. R-Core

  • Fu YH, Campioli M, Deckmyn G, Janssens IA (2012) The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation. PLoS ONE 7(10):e47324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L, Hanson PJ, Mac Post W, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 eastern US spring freeze: increased cold damage in a warming world? Bioscience 58(3):253–262

    Article  Google Scholar 

  • Harrell FE (2016) Hmisc: Harrel miscellaneous. R package: version 4.0-1

  • Hedley PE, Russell JR, Jorgensen L, Gordon S, Morris JA, Hackett CA, Cardle L, Brennan R (2010) Candidate genes associated with bud dormancy release in blackcurrant (Ribes nigrum L.). BMC Plant Biol 10(1):202

    Article  PubMed  PubMed Central  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, Heiberger R, Schuezenmeister A, Scheibe S (2016) multcorp: simultaneous inference in general parametric models. R package: version 1.4-6

  • Jones KS, Paroschy J, McKersie BD, Bowley SR (1999) Carbohydrate composition and freezing tolerance of canes and buds in Vitis vinifera. J Plant Physiol 155:101–106

    Article  CAS  Google Scholar 

  • Jones HG, Hillis RM, Gordon SL, Brennan RM (2013) An approach to the determination of winter chill requirements for different Ribes cultivars. Plant Biol 15(1):18–27

    Article  PubMed  Google Scholar 

  • Jones HG, Gordon SL, Brennan RM (2015) Chilling requirement of Ribes cultivars. Front Plant Sci 5:767

    Article  PubMed  PubMed Central  Google Scholar 

  • Jönsson AM, Bärring L (2011) Ensemble analysis of frost damage on vegetation caused by spring backlashes in a warmer Europe. Nat Hazard Earth Syst 11(2):401–418

    Article  Google Scholar 

  • Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16

    Article  CAS  Google Scholar 

  • Kalberer SR, Arora R, Leyva-Estrada N, Krebs SL (2007) Cold hardiness of floral buds of deciduous azaleas: dehardening, rehardening, and endodormancy in late winter. J Am Soc Hortic Sci 132(1):73–79

    Google Scholar 

  • Kjaer KH, Poiré R, Ottosen CO, Walter A (2012) Rapid adjustment in chrysanthemum carbohydrate turnover and growth activity to a change in time-of-day application of light and daylength. Funct Plant Biol 39(8):639–649

    Article  CAS  Google Scholar 

  • Leinonen L, Repo T, Hanninen H (1997) Changing environmental effects on frost hardiness of Scots pine during dehardening. Ann Bot 79(2):133–137

    Article  Google Scholar 

  • Lenz A, Hoch G, Vitasse Y, Körner C (2013) European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytol 200(4):1166–1175

    Article  PubMed  Google Scholar 

  • Mackėla I, Kraujalis P, Baranauskienė R, Venskutonis PR (2015) Biorefining of blackcurrant (Ribes nigrum L.) buds into high value aroma and antioxidant fractions by supercritical carbon dioxide and pressurized liquid extraction. J Supercrit Fluids 104:291–300

    Article  Google Scholar 

  • Mahfoozi S, Limin AE, Fowler DB (2001) Developmental regulation of low-temperature tolerance in winter wheat. Ann Bot 87(6):751–757

    Article  Google Scholar 

  • Muffler L, Beierkuhnlein C, Aas G, Jentsch A, Schweiger AH, Zohner C, Kreyling J (2016) Distribution ranges and spring phenology explain late frost sensitivity in 170 woody plants from the Northern Hemisphere. Global Ecol Biogeogr 25(9):1061–1071

    Article  Google Scholar 

  • Ögren E (2001) Effects of climatic warming on cold hardiness of some northern woody plants assessed from simulation experiments. Physiol Plantarum 112(1):71–77

    Article  Google Scholar 

  • Pagter M, Arora R (2013) Winter survival and deacclimation of perennials under warming climate: physiological perspectives. Physiol Plantarum 147(1):75–87

    Article  CAS  Google Scholar 

  • Pagter M, Hausman JF, Arora R (2011a) Deacclimation kinetics and carbohydrate changes in stem tissues of Hydrangea in response to an experimental warm spell. Plant Sci 180:140–148

    Article  CAS  PubMed  Google Scholar 

  • Pagter M, Lefèvre I, Arora R, Hausman JF (2011b) Quantitative and qualitative changes in carbohydrates associated with spring deacclimation in contrasting Hydrangea species. Environ Exp Bot 72(3):358–367

    Article  CAS  Google Scholar 

  • Pagter M, Andersen UB, Andersen L (2015) Winter warming delays dormancy release, advances budburst, alters carbohydrate metabolism and reduces yield in a temperate shrub. AoB plants 7

  • Palonen P (1999) Relationship of seasonal changes in carbohydrates and cold hardiness in canes and buds of three red raspberry cultivars. J Am Soc Hortic Sci 124(5):507–513

    CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2016) nlme: linear and nonlinear mixed effects models. R package: version 3.1-117. R-Core. http://cran.r-project.org/package=nlme

  • Rapacz M (2002) Cold-deacclimation of Oilseed Rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Ann Bot 89(5):543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renaut J, Lutts S, Hoffmann L, Hausman JF (2004) Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biol 7(1):81–90

    Google Scholar 

  • Rodrigo J (2000) Spring frosts in deciduous fruit trees—morphological damage and flower hardiness. Sci Hortic 85(3):155–173

    Article  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12(5):217–223

    Article  CAS  PubMed  Google Scholar 

  • Rowland LJ, Ogden EL, Ehlenfeldt MK, Vinyard B (2005) Cold hardiness, deacclimation kinetics, and bud development among 12 diverse blueberry genotypes under field conditions. J Am Soc Hortic Sci 130(4):508–514

    Google Scholar 

  • Saxe H, Cannell MG, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149(3):369–399

    Article  CAS  Google Scholar 

  • Sønsteby A, Heide OM (2014) Chilling requirements of contrasting black currant (Ribes nigrum L.) cultivars and the induction of secondary bud dormancy. Sci Hortic 179:256–265

    Article  Google Scholar 

  • Steponkus PL, Lanphear FO (1967) Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol 42(10):1423–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocker TF, Qin D, Plttner G, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) IPCC. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Stone W, Idle DB, Brennan RM (1993) Freezing events within overwintering buds of blackcurrant (Ribes nigrum L.). Ann Bot 72(6):613–617

    Article  Google Scholar 

  • Suojala T, Lindén L (1997) Frost hardiness of Philadelphus and Hydrangea clones during ecodormancy. Acta Agric Scand B S P 47(1):58–63

    Google Scholar 

  • Takeda F, Arora R, Wisniewski ME, Davis GA, Warmund MR (1993) Assessment of freeze injury in ‘Boskoop Giant’ black currant buds. HortScience 28(6):652–654

    Google Scholar 

  • Tinklin IG, Wilkinson EH, Schwabe WW (1970) Factors affecting flower initiation in the black currant Ribes nigrum (L.). J Hortic Sci Biotech 45:275–282

    Google Scholar 

  • Vitasse Y, Basler D (2014) Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments? Tree Physiol 34(2):174–183

    Article  PubMed  Google Scholar 

  • Vitasse Y, Lenz A, Hoch G, Körner C (2014) Earlier leaf-out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. J Ecol 102(4):981–988

    Article  Google Scholar 

  • Wei T, Simko V (2016) Corrplot: visualization of a correlation matrix. R package: version 0.77

  • Welling A, Moritz T, Palva ET, Junttila O (2002) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129(4):1633–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Elin Marianne Rosenstrøm, Karin Henriksen, Ruth Nielsen and Annette Steen Brandsholm for excellent technical assistance. This study was supported by the Danish Council for Independent Research | Technology and Production Sciences (Project No. DFF-1335-00182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majken Pagter.

Additional information

Communicated by L. Bavaresco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winde, J., Andersen, U.B., Kjaer, K.H. et al. Variation in freezing tolerance, water content and carbohydrate metabolism of floral buds during deacclimation of contrasting blackcurrant cultivars. Acta Physiol Plant 39, 201 (2017). https://doi.org/10.1007/s11738-017-2503-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2503-9

Keywords

Navigation