Better tolerance to water deficit in doubled diploid ‘Carrizo citrange’ compared to diploid seedlings is associated with more limited water consumption

Abstract

Tolerance to water deficit in diploid (2x) and doubled diploid (4x) ‘Carrizo citrange’ (Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) was investigated. Water deficit was applied for 4 weeks. Physiological parameters, including stomatal conductance (g s), photosynthesis (A), transpiration (E), leaf and soil water potentials (Ψ leaf; Ψ soil), and pot water loss, were monitored throughout the stress. Moreover, ABA, H2O2 contents, and the expression of genes involved in ABA biosynthesis (NCED3), regulation of abscisic acid signaling (ABI1), and coding for a catalase enzyme (CAT2) known to favor H2O2 scavenging were monitored. During the experiment g s, A, and E values were most of the time higher in 2x compared to 4x. During the water deficit period, pot water loss decreased faster in 2x compared to 4x, leading to a faster decrease in all physiological parameters in 2x. The higher sensitivity of 2x compared to 4x was correlated with more numerous thinner roots, higher leaf ABA and H2O2 contents, and with the lower leaf water potential. ABI1 and NCED3 expression was not strictly correlated with the ABA content. However, the higher CAT2 expression in 4x was correlated with the lower leaf H2O2 contents. Therefore, the better tolerance observed in 4x ‘Carrizo citrange’ compared to 2x was associated with more limited water consumption and better and H2O2 scavenging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abel S, Becker H (2007) The effect of autopolyploid on biomass production in homozygous lines of Brassica rapa and Brassica aleracea. Plant Breed 126:642–643

    Article  Google Scholar 

  2. Agustí J, Zapater M, Iglesias DJ, Cercós M, Tadeo FR, Talón M (2007) Differential expression of putative 9-cis-epoxycarotenoid dioxygenases and abscisic acid accumulation in water stressed vegetative and reproductive tissues of citrus. Plant Sci 172:85–94

    Article  Google Scholar 

  3. Aleza P, Froelicher Y, Schwarz S, Agusti M, Hernandez M, Juarez J, Luro F, Morillon R, Navarro L, Ollitrault P (2011) Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Ann Bot 108:37–50

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Allario T, Brumos J, Colmenero-Flores JM, Tadeo F, Froelicher Y, Talon M, Navarro L, Ollitrault P, Morillon R (2011) Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J Exp Bot 62:2507–2519

    CAS  Article  PubMed  Google Scholar 

  5. Allario T, Brumos J, Comenero-Flores JM, Iglesias DJ, Pina JA, Navarro L, Talon M, Ollitrault P, Morillon R (2013) Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell Environ 36:856–868

    CAS  Article  PubMed  Google Scholar 

  6. Arbona V, Manzi M, Ollas C, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Argamasilla R, Gómez-Cadenas A, Arbona V (2014) Metabolic and regulatory responses in citrus rootstocks in response to adverse environmental conditions. J Plant Growth Regul 33:169–180

    CAS  Article  Google Scholar 

  8. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  9. Ben Yahmed J, Costantino G, Amiel P, Talon M, Ollitrault P, Morillon R, Luro F (2016) Diversity in the trifoliate orange taxon reveals two main genetic groups marked by specific morphological traits and water deficit tolerance properties. J Agri Sci 154(3):495–514

    CAS  Article  Google Scholar 

  10. Brito MEB, dos Anjos Soares LA, Fernandes PD, de Lima GS, da Silva Sá FV, de Melo AS (2012) Physiological behavior combinations scion/rootstock citrus under water stress. Braz J Agric Sci 7:857–865

    Google Scholar 

  11. Cameron JW, Soost RK (1969) Characters of new populations of citrus polyploids, and the relation between tetraploidy in the pollen parent and hybrid tetraploid progeny. In: Chapman HD (ed) Proceedings of the international citric symposium, University of California, Riverside, vol 1, pp 199–205

  12. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    CAS  Article  PubMed  Google Scholar 

  13. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    CAS  Article  PubMed  Google Scholar 

  15. Dambier D, Benyahia H, Pensabene-Bellavia G et al (2011) Somatic hybridization for citrus rootstock breeding: an effective tool to solve some important issues of the Mediterranean citrus industry. Plant Cell Rep 30:883–900

    CAS  Article  PubMed  Google Scholar 

  16. Davenport SV, Gallego SM, Benavides MP, Tomaro ML (2004) Behavior of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Regul 40:81–88

    Article  Google Scholar 

  17. Dellaporta SL, Wood J, Hicks JB (1983) A plant minipreparation: version II. Plant Mol Biol Rep 1:19–20

    CAS  Article  Google Scholar 

  18. Dodd IC, Theobald JC, Richer SK, Davies WJ (2009) Partial phenotypic reversion of ABA-deficient flacca tomato (Solanum lycopersicum) scions by a wild-type rootstock: normalizing shoot ethylene relations promotes leaf area but does not diminish whole plant transpiration rate. J Exp Bot 60:4029–4039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Feng-Quan T, Hong T, Wu-Jun L, Jian-Mei L, Xiao-Meng W, Hong-Yan Z, Wen-Wu G (2015) Comparative metabolic and transcriptional analysis of a double diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance. BMC Plant Biol 15:89

    Article  Google Scholar 

  20. Froelicher Y, Bassene JB, Jedidi-Neji E, Dambier D, Morillon R, Bernardini G, Costantino G, Ollitrault P (2007) Induced parthenogenesis in mandarin for haploid production: induction procedures and genetic analysis of plantlets. Plant Cell Rep 26:937–944

    CAS  Article  PubMed  Google Scholar 

  21. Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Article  Google Scholar 

  22. Gosti F, Beaudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J (1999) ABI1 protein phosphatases 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1909

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Grosser JW, Gmitter FG (2011) Protoplast fusion in the production of tetraploids and triploids: applications in scion and rootstock breeding. Plant Cell Tissue Organ Culture 104:343–357

    CAS  Article  Google Scholar 

  24. Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514

    CAS  PubMed  Google Scholar 

  25. Hussain S, Curk F, Dhuique-Mayer C, Urban L, Ollitrault P, Luro F, Morillon R (2012) Autotetraploid trifoliate orange (Poncirus trifoliata) rootstocks do not impact clementine quality but reduce fruit yields and highly modify rootstock/scion physiology. Sci Hortic 134:100–107

    Article  Google Scholar 

  26. Jellings AJ, Leech RM (1984) Anatomical variation in first leaves on nine Triticum genotypes and its relationship to photosynthetic capacity. New Phytol 96:371–382

    Article  Google Scholar 

  27. Jiang F, Hartung W (2008) Long-distance signaling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59:37–43

    CAS  Article  PubMed  Google Scholar 

  28. Jiang AM, Gan L, Tu Y, Ma HX, Zhang JM, Song ZJ et al (2013) The effect of genome duplication on seed germination and seedling growth of rice under salt stress. Aust J Crop Sci 7:1814–1821

    CAS  Google Scholar 

  29. Li WD, Biswas DK, Xu H, Xu CQ, Wang XZ, Liu JK, Jiang GM (2009) Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Func Plant Biol 36:783–792

    CAS  Article  Google Scholar 

  30. Li X, Yu E, Fan C, Zhang C, Fu T, Zhou Y (2012) Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta 236:579–596

    CAS  Article  PubMed  Google Scholar 

  31. Maherali H, Walden AE, Husband BC (2009) Genome duplication and the evolution of physiological responses to water stress. New Phytol 184:721–731

    CAS  Article  PubMed  Google Scholar 

  32. Manzi M, Lado J, Rodrigo MJ, Zacarıas L, Arbona V, Gomez-Cadenas A (2015) Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs. Plant Cell Physiol 56:2457–2466

    CAS  Article  PubMed  Google Scholar 

  33. Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    CAS  Article  PubMed  Google Scholar 

  34. Meinhard M, Grill E (2001) Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett 508:443–446

    CAS  Article  PubMed  Google Scholar 

  35. Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. Plant J 25:295–303

    CAS  Article  PubMed  Google Scholar 

  36. Morillon R, Chrispeels MJ (2001) The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. PNAS 98:14138–14143

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Mouhaya W, Allario T, Brumos J, Andres F, Froelicher Y, Luro L, Talon M, Ollitrault P, Morillon R (2010) Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes. Funct Plant Biol 37:674–685

    CAS  Article  Google Scholar 

  38. Moya JL, Primo-Millo E, Talón M (1999) Morphological factors determining salt tolerance in citrus seedlings: the shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. Plant Cell Environ 22:1425–1433

    CAS  Article  Google Scholar 

  39. Oliveira TM, Cidade LC, Gesteira AS, Coelho Filho MA, Soares Filho WS, Costa MGC (2011) Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses. Tree Genet Genomes 7:1123–1134

    Article  Google Scholar 

  40. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2013) ABA control of plant macro element membrane transport systems in response to water deficit and high salinity. Plant Cell Environ 202:35–49

    Google Scholar 

  41. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2003–2007

    Article  Google Scholar 

  42. Romero P, Navarro JM, Pérez-Pérez J, García-Sánchez F, Gómez-Gómez A, Porras I, Botía P (2006) Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiol 26:1537–1548

    CAS  Article  PubMed  Google Scholar 

  43. Romero-Aranda R, Bondada BR, Syvertsen JP, Grosser JW (1997) Leaf characteristics and net gas exchange of diploid and autotetraploid citrus. Ann Bot 79:153–160

    Article  Google Scholar 

  44. Ruiz M, Pina JA, Alcayde E, Morillon R, Navarro L, Primo-Millo M (2015) Behavior of diploid and tetraploid genotypes of ‘Carrizo’ citrange under abiotic stress. Acta Hortic (ISHS) 1065:1283–1292

    Article  Google Scholar 

  45. Saleh B, Allario T, Dambier D, Ollitrault P, Morillon R (2008) Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. C R Biol 331:703–710

    Article  PubMed  Google Scholar 

  46. Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991–1997

    CAS  Article  PubMed  Google Scholar 

  47. Scholander R, Hammel HT, Bradstreet ED, Hemmiegsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    CAS  Article  PubMed  Google Scholar 

  48. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    CAS  Article  PubMed  Google Scholar 

  49. Speirs J, Binney A, Collins M, Edwards E, Loveys B (2013) Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). J Exp Bot 64:1907–1916

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Syvertsen JP, Lee LS, Grosser JW (2000) Limitations on growth and net gas exchange of diploid and tetraploid citrus rootstock cultivars grown at elevated CO2. J Am Soc Hortic Sci 125:228–234

    Google Scholar 

  51. Velikova V, Yordancv I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    CAS  Article  Google Scholar 

  52. Wang Z, Wang M, Liu L, Meng F (2013) Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Int J Mol Sci 14:20299–20325

    Article  PubMed  PubMed Central  Google Scholar 

  53. Warner DA, Ku MSB, Edwards GE (1987) Photosynthesis, leaf anatomy, and cellular constituents in polyploidy C4 grass Panicum virgatum. Plant Physiol 84:461–466

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbaith D, Zhu JK (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    CAS  Article  PubMed  Google Scholar 

  55. Xue H, Zhang F, Zhang Z-H, Fu J-F, Wang F, Zhang B, Ma Y (2015) Differences in salt tolerance between diploid and autotetraploid apple seedlings exposed to salt stress. Sci Hortic 190:24–30

    CAS  Article  Google Scholar 

  56. Ye N, Jia L, Zhang J (2012) ABA signal in rice under stress conditions. Rice 5:1–9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang XY, Hu CG, Yao JL (2010) Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J Plant Physiol 167(2):88–94

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Angel Boix for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raphaël Morillon.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Funding

T.M. Oliveira and J. Dutra were granted by CAPES, Brazil in the frame of a CAPES-COFECUB project (no. 729/11). This work was funded by a Spanish MINECO project ‘AGL2011-26490’, by a French CTPS project ‘AAP12 no. 3/C2012-01’, and by the FEDER ‘Cavalbio’ project.

Additional information

Communicated by P. Sowinski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, T.M., Yahmed, J.B., Dutra, J. et al. Better tolerance to water deficit in doubled diploid ‘Carrizo citrange’ compared to diploid seedlings is associated with more limited water consumption. Acta Physiol Plant 39, 204 (2017). https://doi.org/10.1007/s11738-017-2497-3

Download citation

Keywords

  • ABA
  • Citrus
  • Hydrogen peroxide
  • Polyploid
  • Rootstock
  • Water deficit