Skip to main content

Advertisement

Log in

Nitrogen-induced variations in leaf gas exchange of spring triticale under field conditions

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Nitrogen (N) is the key factor limiting photosynthetic processes and crop yield. Little is known about the response of leaf gas exchange of spring triticale (Triticosecale Wittm.) to N supply. The effect of N fertilizers on different gas exchange variables, i.e., photosynthetic rate (A), transpiration rate (E), stomatal conductance (g s), instantaneous water use efficiency (WUE) and maximum quantum yield of photosystem II (PSII) (F v/F m), chlorophyll index (SPAD, soil–plant analysis development), and the relationship of these variables with yield were studied in spring triticale grown under field conditions. Six treatments of N—0, 90, 180, 90 + 30, 90 + 30 + 30 kg ha−1 (applied as ammonium nitrate, AN) and one treatment of N 90 + 30 + 30 kg ha−1 (applied as urea ammonium nitrate solution, UAN) were compared. The analysis of variance showed that throughout the triticale growing season, N fertilization had significant effects on A, WUE, g s and SPAD. On average, N fertilizer application increased A values by 14–70%. E and F v/F m values were not influenced by N fertilization levels. The effect of growth stage and year on gas exchange variables and F v/F m and SPAD was found to be significant. At different growth stages, A values varied and maximum ones were reached at BBCH 31–33 (decimal code system of growth stages) and BBCH 59. With aging, values of A decreased independently of N fertilization level. The gas exchange variables were equally affected by both fertilizer forms. The interplay among grain yield, leaf gas exchange variables, F v/F m and SPAD of spring triticale was estimated. The statistical analysis showed that grain yield positively and significantly correlated with A and SPAD values throughout the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bahar B, Yildirim M, Barutcular C (2009) Relationships between stomatal conductance and yield components in spring durum wheat under Mediterranean conditions. Not Bot Horti Agrobo 37:45–48

    Google Scholar 

  • Bouranis DL, Chorianopoulou SN, Dionias A, Sofianou G, Thanasoulas A, Liakopoulos G, Nikolopoulos D (2012) Comparison of the S-, N-or P-deprivations’ impacts on stomatal conductance, transpiration and photosynthetic rate of young maize leaves. Am J Plant Sci 3:1058–1065. doi:10.4236/ajps.2012.38126

    Article  Google Scholar 

  • Cabrera-Bosquet L, Albrizio R, Araus JL, Nogues S (2009) Photosynthetic capacity of field-grown durum wheat under different N availabilities: a comparative study from leaf to canopy. Environ Exp Bot 67:145–152. doi:10.1016/j.envexpbot.2009.06.004

    Article  CAS  Google Scholar 

  • Egnér H, Richm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die beürteilung des Nährstof-zustandes der Böden. In II. Chemische Extraktionsmethoden zur Phosphor und Kaliumbestimmung. Kungliga Lantbrukshögskolans Annaler 26:199–215

    Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. doi:10.1007/BF00377192

    Article  PubMed  Google Scholar 

  • Feng W, He L, Zhang H, Guo B, Zhu Y, Wang C, Guo T (2015) Assessment of plant nitrogen status using chlorophyll fluorescence parameters of the upper leaves in winter wheat. Eur J Agron 64:78–87. doi:10.1016/j.eja.2014.12.013

    Article  CAS  Google Scholar 

  • Fischer RA, Byerlee D, Edmeades GO (2014) Crop yields and global food security: will yield increase continue to feed the world? Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Garofalo P, Rinaldi M (2015) Leaf gas exchange and radiation use efficiency of sunflower (Helianthus annuus L.) in response to different deficit irrigation strategies: from solar radiation to plant growth analysis. Eur J Agr 64:88–97. doi:10.1016/j.eja.2014.12.010

    Article  Google Scholar 

  • Gioia T, Nagel KA, Beleggia R, Fragasso M, Ficco DBM, Pieruschka R, De Vita P, Fiorani F, Papa R (2015) Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization. J Exp Bot 66:5519–5530. doi:10.1093/jxb/erv289

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Bermejo V, Gimeno BS (2010) Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. J Agric Sci 148:319–328. doi:10.1017/S0021859610000031

    Article  CAS  Google Scholar 

  • Hirasawa T, Ozawa S, Taylaran RD, Ookawa T (2010) Varietal differences in photosynthetic rates in rice plants, with special reference to the nitrogen content of leaves. Plant Prod Sci 13:53–57. doi:10.1626/pps.13.53

    Article  CAS  Google Scholar 

  • Hura T, Hura K, Grzesiak M (2011) Soil drought applied during the vegetative growth of triticale modified the physiological and biochemical adaptation to drought during the generative development. J Agron Crop Sci 197:113–123. doi:10.1111/j.1439-037X.2010.00450.x

    Article  Google Scholar 

  • Janušauskaitė D, Auškalnienė O, Feizienė D, Feiza V (2013) Response of spring barley physiological parameters to agricultural practices and meteorological conditions. Zemdirbyste-Agriculture 100:127–136. doi:10.13080/z-a.2013.100.016

    Article  Google Scholar 

  • Jiang C, Zu C, Wang H (2015) Effect of nitrogen fertilization on growth and photosynthetic nitrogen use efficiency in tobacco (Nicotiana tabacum L.). J Life Sci 9:373–380

    CAS  Google Scholar 

  • Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V (2014) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Biochem 81:16–25. doi:10.1016/j.plaphy.2014.03.029

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. doi:10.1007/s11738-016-2113-y

    Article  Google Scholar 

  • Knapowski T, Ralcewicz M, Barczak B, Kozera W (2009) Effect of nitrogen and zinc fertilizing on bread-making quality of spring triticale cultivated in Notec Valley. Pol J Environ Stud 18:227–233

    CAS  Google Scholar 

  • Krček M, Slamka P, Olšovská K, Brestič M, Benčíková M (2008) Reduction of drought stress effect in spring barley by nitrogen fertilization. Plant Soil Environ 54:7–13

    Google Scholar 

  • Lewandowski I, Kauter D (2003) The influence of nitrogen fertilizer on the yield and combustion quality of whole grain crops for solid fuel use. Ind Crop Prod 17:103–117. doi:10.1016/S0926-6690(02)00090-0

    Article  Google Scholar 

  • Li D, Tian M, Cai J, Jiang D, Cao W, Dai T (2013) Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regul 70:257–263. doi:10.1007/s10725-013-9797-4

    Article  CAS  Google Scholar 

  • Lin YC, Hu YG, Ren CZ, Guo LC, Wang CL, Jiang Y, Wang XJ, Phendukani H, Zeng ZH (2013) Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in naked oat. J Integr Agric 12:2164–2171

    Article  Google Scholar 

  • Loboda T (2010) Gas exchange and growth of triticale seedlings under different nitrogen supply and water stress. J Plant Nutr 33:371–380. doi:10.1080/01904160903470422

    Article  CAS  Google Scholar 

  • Nasraoui-Hajaji A, Gouia H (2014) Photosynthesis sensitivity to NH4 +–N change with nitrogen fertilizer type. Plant Soil Environ 60:274–279

    CAS  Google Scholar 

  • Olszewski J, Makowska M, Pszczółkowska A, Okorski A, Bieniaszewski T (2014) The effect of nitrogen fertilization on flag leaf and ear photosynthesis and grain yield of spring wheat. Plant Soil Environ 60:531–536

    CAS  Google Scholar 

  • Pal M, Rao LS, Jain V, Srivastava AC, Pandey R, Raj A, Singh KP (2005) Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis. Biol Plantarum 49:467–470

    Article  Google Scholar 

  • Rizza F, Ghashghaieb J, Meyerc S, Matteud L, Mastrangelod AM, Badeck FW (2012) Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crops Res 125:49–60. doi:10.1016/j.fcr.2011.09.001

    Article  Google Scholar 

  • Schlemmer M, Gitelson AA, Schepers J, Ferguson R, Peng Y, Shanahan J, Rundquist D (2013) Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int J Appl Earth Obs 25:47–54. doi:10.1016/j.jag.2013.04.003

    Article  Google Scholar 

  • Shangguan ZP, Shao MA, Dyckmans J (2000) Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ Exp Bot 44:141–149

    Article  CAS  PubMed  Google Scholar 

  • Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2015) Wheat cultivars selected for high F v/F m under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Plantarum 153:284–298. doi:10.1111/ppl.12245

    Article  CAS  Google Scholar 

  • Shen Y, Li S (2011) Effects of the spatial coupling of water and fertilizer on the chlorophyll fluorescence parameters of winter wheat leaves. Agric Sci China 10:1923–1931. doi:10.1016/S1671-2927(11)60193-4

    Article  CAS  Google Scholar 

  • Sieling K, Böttcher U, Kage H (2016) Dry matter partitioning and canopy traits in wheat and barley under varying N supply. Eur J Agron 74:1–8. doi:10.1016/j.eja.2015.11.022

    Article  Google Scholar 

  • Uribelarrea M, Crafts-Brandner SJ, Below FE (2009) Physiological N response of field-grown maize hybrids (Zea mays L.) with divergent yield potential and grain protein concentration. Plant Soil 316:151–160. doi:10.1007/s11104-008-9767-1

    Article  CAS  Google Scholar 

  • Wu JD, Li JC, Wei FZ, Wang CY, Zhang Y, Sun G (2014) Effects of nitrogen spraying on the post-anthesis stage of winter wheat under waterlogging stress. Acta Physiol Plant 36:207–216. doi:10.1007/s11738-013-1401-z

    Article  CAS  Google Scholar 

  • Zhou X-J, Liang Y, Chen H, Shen S-H, Jing Y-X (2006) Effects of rhizobia inoculation and nitrogen fertilization on photosynthetic physiology of soybean. Photosynthetica 44:530–535. doi:10.1007/s11099-006-0066-x

    Article  CAS  Google Scholar 

  • Živčák M, Olšovská K, Slamka P, Galambošová J, Rataj V, Shao HB, Brestič M (2014) Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ 5:210–215

    Google Scholar 

Download references

Acknowledgements

This research was part of the long-term LRCAF programme “Productivity and sustainability of agricultural and forest soils”, approved by Lithuanian Ministry of Education and Science (V-153; 2011.01.31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiva Janusauskaite.

Additional information

Communicated by G. Montanaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janusauskaite, D., Feiziene, D. & Feiza, V. Nitrogen-induced variations in leaf gas exchange of spring triticale under field conditions. Acta Physiol Plant 39, 193 (2017). https://doi.org/10.1007/s11738-017-2495-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2495-5

Keywords

Navigation