Skip to main content
Log in

Contrasting acclimation mechanisms of berry color variant grapevine cultivars (Vitis vinifera L. cv. Furmint) to natural sunlight conditions

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The acclimation mechanisms of two berry color variant grapevine leaves, Furmint White (FW) and Furmint Red (FR), to natural sunlight conditions were investigated comparing leaves from two distinct locations: at canopy surface (sun-exposed leaves) and in the inner layers (shaded leaves). We found that in contrast to FR leaves, sun-exposed FW leaves were thicker than shaded leaves due to thicker palisade tissues. Confocal laser scanning microscopy of Naturstoff-treated leaf segments revealed that flavonoids were accumulated in nuclei, cell walls, cytoplasm, and chloroplasts of the adaxial epidermal and palisade layers of sun-exposed leaves in both cultivars. High-performance liquid chromatography analysis showed that the main phenolic components in both cultivars were caftaric acid and various glycosylated flavonols. Among the latter, the dominant component was quercetin glucuronide in both cultivars, unaffected by light conditions. However, caftaric acid and quercetin glucoside were present in significantly higher amounts in sun-exposed than in shaded leaves of both cultivars, but the effect of light conditions on caftaric acid contents was more pronounced in FR than in FW. Accordingly, the total polyphenol content of leaf extracts characterized by Folin-reagent reactivity was more enhanced in sun-exposed leaves of FR, than in FW. Our data suggest two different sunlight acclimation strategies to protect photosynthetic mesophyll tissues from potential photo-oxidative damage. One is realized in FW leaves as stronger shading by thicker palisade layer accompanied by enhanced chemical defense. The other is achieved in FR leaves via a more pronounced increase in caftaric acid and total polyphenol content but without morphological adjustments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agati G, Galardi C, Gravano E, Romani A, Tattini M (2007) Flavonoid distribution in tissues of Phillyrea latifolia L. leaves as estimated by microspectrofluorometry and multispectral fluorescence microimaging. Photochem Photobiol 76:350–360

    Article  Google Scholar 

  • Agati G, Stefano G, Biricolti S, Tattini M (2009) Mesophyll distribution of ‘antioxidant’ flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Ann Bot Lond 104:853–861

    Article  CAS  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Andelković M, Radovanović B, Andelković AM, Radovanović V (2015) Phenolic compounds and bioactivity of healthy and infected grapevine leaf extracts from red varieties Merlot and Vranac (Vitis vinifera L.). Plant Foods Hum Nutr 70:317–323

    Article  PubMed  Google Scholar 

  • Berli F, D’Angelo J, Cavagnaro B, Bottini R, Wuilloud R, Silva MF (2008) Phenolic composition in grape (Vitis vinifera L. cv. Malbec) ripened with different solar UV-B radiation levels by capillary zone electrophoresis. J Agric Food Chem 56(9):2892–2898

    Article  CAS  PubMed  Google Scholar 

  • Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M (2013) Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 14:3540–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley TN, Sack L, Golert ME (2011) The role of bundle sheath extensions and life form in stomatal response to leaf water status. Plant Physiol 156:962–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Chacón JL, García E, Martínez J, Romero R, Gómez S (2009) Impact of the vine water status ont he berry and seed phenolic composition of’Merlot’ (Vitis vinifera L.) cultivated in a warm climate: consequence for the style of wine. Vitis 48:7–9

    Google Scholar 

  • Chavarria G, Santos PH, Castro LAS, Marodin GAB, Bergamaschi H (2012) Anatomy, chlorophyll content and photosynthetic potential in grapevine leaves under plastic cover. Revista Brasileira de Fruticultura 34:661–668

    Article  Google Scholar 

  • Csepregi K, Kocsis M, Hideg É (2013) On the spectrophotometric determination of total phenolic and flavonoid contents. Acta Biol Hung 64:500–509

    Article  CAS  PubMed  Google Scholar 

  • Csepregi K, Neugart S, Schreiner M, Hideg É (2016) Comparative evaluation of total antioxidant capacity of plant polyphenols. Molecules 21:1–17. doi:10.3390/molecules21020208

    Article  Google Scholar 

  • Dani C, Oliboni LS, Agostini F, Funchal C, Serafini L, Henriques JA, Salvador M (2010) Phenolic content of grapevine leaves (Vitis labrusca var. Bordo) and its neuroprotective effect against peroxide damage. Toxicol In Vitro 24:148–153

    Article  CAS  PubMed  Google Scholar 

  • Di Ferdinando M, Brunetti C, Agati G, Tattini M (2014) Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas. Environ Exp Bot 103:107–116

    Article  Google Scholar 

  • Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57:257–268

    CAS  Google Scholar 

  • Erlejman AG, Verstraiten SV, Graga CG, Oteiza PI (2004) The interaction of flavonoids with membranes: potential determinants of flavonoid antioxidant effects. Free Radic Res 38:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Farhadi K, Esmaeilzadeh F, Hatami M, Forough M, Molaie R (2016) Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province. Iran. Food Chem 199:847–855

    Article  CAS  PubMed  Google Scholar 

  • Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142

    Article  Google Scholar 

  • Fernandes F, Ramalhosa E, Pires E, Verdial J, Valentao P, Andrade P, Bento A, Pereira JA (2013) Vitis vinifera leaves towards bioactivity. Ind Crop Prod 43:434–440

    Article  CAS  Google Scholar 

  • Flamini R, Traldi P (2010) Grape and Wine Polyphenols. In: Desiderio DM, Nibbering NMM (eds) Mass spectrometry in grape and wine chemistry. Wiley, New Jersey, pp 163–214

    Chapter  Google Scholar 

  • Götz M, Albert A, Stitch S, Heller W, Scherb H, Krins A, Langebartels C, Seidlitz HK, Ernst D (2010) PAR modulation of the UV-dependent levels of flavonoid metabolites in Arabidopsis thaliana (L.) Heynh. leaf rosettes: cumulative effects after a whole vegetative growth period. Protoplasma 243:95–103

    Article  PubMed  Google Scholar 

  • Grünz G, Daniel H, Spanier B (2010) In vitro visualization of flavonoids in C. elegans using 2-aminoethyl diphenyl borate. The Worm Breeder’s. Gazette 2:13

    Google Scholar 

  • Hatier JHB, Gould KS (2008) Foliar anthocyanins as modulators of stress signals. J Theor Biol 253:625–627

    Article  CAS  PubMed  Google Scholar 

  • Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    Article  PubMed  Google Scholar 

  • Hutzler P, Fischbach R, Heller W, Jungblut TP, Reuber S, Schmitz R, Veit M, Weissenbeck G, Schnitzler JP (1998) Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J Exp Bot 49:953–965

    Article  CAS  Google Scholar 

  • Igersheim A, Cichocki O (1996) A simple method for microtome sectioning of prehistoric charcoal specimens, embedded in 2-hydroxethyl methacrylate (HEMA). Rev Palaeobot Palyno 92:389–393

    Article  Google Scholar 

  • Inoue K (2011) Emerging roles of the chloroplast outer envelope membrane. Trends Plant Sci 16:550–557

    Article  CAS  PubMed  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric Forest Meteorol 120:191–218

    Article  Google Scholar 

  • Kocsis M, Abrankó L, Ayaydin F, Csepregi K, Papp N, Teszlák P, Jakab G (2015) Main leaf polyphenolic components of berry color variant grapevines and their acclimative responses to sunlight exposure. Appl Sci 5:1955–1969

    Article  Google Scholar 

  • Kolb CA, Kaser MA, Kopecky J, Zotz G, Riederer M, Pfündel EE (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosar M, Küpeli E, Malyer H, Uylaser V, Türkben C, Baser KH (2007) Effect of brining on biological activity of leaves of Vitis vinifera L. (cv. Sultani Cekirdeksiz) from Turkey. J Agric Food Chem 55:4596–4603

    Article  CAS  PubMed  Google Scholar 

  • Lima A, Bento A, Baraldi I, Malheiro R (2016) Selection of grapevine leaf varieties for culinary process based on phytochemical composition and antioxidant properties. Food Chem 212:291–295

    Article  CAS  PubMed  Google Scholar 

  • Mané C, Souquet JM, Ollé D, Verriés C, Véran F, Mazerolles G, Cheynier V, Fulcrand H (2007) Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of champagne grape varieties. J Agric Food Chem 55:7224–7233

    Article  PubMed  Google Scholar 

  • Markstädter C, Queck I, Baumeister J, Riederer M, Schreiber U, Bilger W (2001) Epidermal transmittance of leaves of Vicia faba for UV radiation as determined by two different methods. Photosynth Res 67:17–25

    Article  PubMed  Google Scholar 

  • Martin G, Josserand SA, Bornman JF, Vogelman TC (1989) Epidermal focussing and the light microenvironment within leaves of Medicago sativa. Physiol Plant 76:485–492

    Article  Google Scholar 

  • Monagas M, Hernández-Ledesma B, Gómez-Cordovés C, Bartolomé B (2006) Commercial dietary ingredients from Vitis vinifera L. leaves and grape skins: antioxidant and chemical characterization. J Agric Food Chem 54:319–327

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    Article  CAS  PubMed  Google Scholar 

  • Nagel LM, Bassmann JH, Edwards GE, Robberecht R, Franceshi VR (1998) Leaf anatomical changes in Populus trichocarpa, Quercus rubra, Pseudotsuga menziesii, and Pinus ponderosa exposed to enhanced ultraviolet-B radiation. Physiol Plant 104:385–396

    Article  CAS  Google Scholar 

  • Németh M (1967) Ampelographic album: cultivated grapevine cultivars. I, 1st edn. Agricultural Press, Budapest, pp 140–150

    Google Scholar 

  • Pérez-Gregorio MR, Regueiro J, González-Barreiro C, Rial-Otero R, Simal-Gándara J (2011) Changes in antioxidant flavonoids during freeze-drying of red onions and subsequent storage. Food Control 22:1108–1113

    Article  Google Scholar 

  • Polster J, Dithmar H, Burgemeister R, Friedemann G, Feucht W (2006) Flavonoids in plant nuclei: detection by laser microdissection and pressure catapulting (LMPC), in vivo staining, and UV-visible spectroscopic titration. Physiol Plant 126:163–174

    Article  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinert F, Leal-Costa MV, Junqueira NE, Tavares ES (2013) Are sun- and shade-type anatomy required for the acclimation of Neoregelia cruente? An Acad Bras Cienc 85:561–573

    Article  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga J (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Saslowsky DE, Warek U, Winkel BSJ (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J Biol Chem 25:23735–23740

    Article  Google Scholar 

  • Schoedl K, Schuhmacher R, Forneck A (2012) Studying the polyphenols of grapevine leaves according to age and insertion level under controlled conditions. Sci Hortic 141:37–41

    Article  CAS  Google Scholar 

  • Sheahan JJ, Cheong H, Rechnitz GA (1998) The colorless flavonoids of Arabidopsis thaliana (Brassicaceae). I. A model system to study the orthodihydroxy structure. Am J Bot 85:467–475

    Article  CAS  PubMed  Google Scholar 

  • Silva AS, Oliveira JG, Da Cunha M, Vitória AP (2010) Photosynthetic performance and anatomical adaptations in Byrsonima sericea DC. under contrasting light conditions in a remnant of the Atlantic forest. Braz J Plant Physiol 22:245–254

    Article  Google Scholar 

  • Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77

    Article  CAS  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    Article  CAS  Google Scholar 

  • Tattini M, Guidi L, Morassi-Bonzi L, Pinelli P, Remorini D, DeglInnocenti E, Giordano C, Massai R, Agati G (2005) On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytol 167:457–470

    Article  CAS  PubMed  Google Scholar 

  • Tattini M, Remorini D, Pinelli P, Agati G, Saracini E, Traversi ML, Massai R (2006) Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus. New Phytol 170:779–794

    Article  CAS  PubMed  Google Scholar 

  • Tholen D, Boom C, Zhu XG (2012) Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Sci 197:92–101

    Article  CAS  PubMed  Google Scholar 

  • Weber B (1992) Phenolische Komponenten des Weinrebenblattes: Identität und phytoathologische Bedeutung. Dissertation. University of Zürich, Germany

    Google Scholar 

  • Zaprometov MN, Nikolaeva TN (2003) Chloroplasts isolated from kidney bean leaves are capable of phenolic compound biosynthesis. Russ J Plant Physiol 50:623–626

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Hungarian Scientific Grant Agency (OTKA K101430). The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Kocsis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by L. Bavaresco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocsis, M., Ayaydin, F., Kőrösi, L. et al. Contrasting acclimation mechanisms of berry color variant grapevine cultivars (Vitis vinifera L. cv. Furmint) to natural sunlight conditions. Acta Physiol Plant 39, 178 (2017). https://doi.org/10.1007/s11738-017-2481-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2481-y

Keywords

Navigation