Foliar application of selenium increases fertility and grain yield in bread wheat under contrasting water availability regimes

Abstract

The study was conducted to assess whether selenium (Se) application modulates fertility to alter grain yield in bread wheat grown under different moisture regimes. Seeds of wheat cultivar Millat-2011 were sown in the plots using a randomized complete block design with three replicates per treatment. After germination, the plants were exposed to six moisture regimes, viz. no irrigation after germination, irrigation at boot stage, irrigations at boot and grain-filling stages, irrigations at crown root, boot and grain-filling stages, irrigations at crown root, boot, heading and grain-filling stages and irrigations at crown root, stem elongation, boot, heading and grain-filling stages. At the heading stage, foliar spray of sodium selenate (0, 2 and 4 mg Se L−1) was done. Withholding water at early growth stages significantly increased oxidative stress and decreased growth and grain yield. Irrespective of moisture regimes, foliar application of Se (2 mg L−1) decreased oxidative stress, modulated photosynthetic pigments and fertility and increased grain yield in wheat. The Se-mediated increase in grain yield was attributed to the increase in chlorophyll and ascorbic acid contents and fertility coupled with decrease of oxidative stress under different moisture regimes. The results could be helpful to manage wheat production in the semi-arid environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abid M, Tian Z, Ata-Ul-Karim ST, Liu Y, Cui Y, Zahoor R, Jiang D, Dai T (2016) Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Plant Physiol Biochem 106:218–227. doi:10.1016/j.plaphy.2016.05.003

    CAS  Article  PubMed  Google Scholar 

  2. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    CAS  Article  PubMed  Google Scholar 

  3. Anjum F, Yaseen M, Rasool E, Wahid A, Anjum S (2003) Water stress in barley (Hordeum vulgare L.). I. Effect on morphological characters. Pak J Agri Sci 40:43–44

    Google Scholar 

  4. Anwar S, Iqbal M, Raza SH, Iqbal N (2013) Efficacy of seed preconditioning with salicylic and ascorbic acid in increasing vigor of rice (Oryza sativa L.) seedling. Pakistan J Bot 45:157–162

    Google Scholar 

  5. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plan Physiol 24:1–15

    CAS  Article  Google Scholar 

  6. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in chloroplasts. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier Science Pub. Co., London, pp 227–287

    Google Scholar 

  7. Ashraf MA, Rasheed R, Hussain I, Iqbal M, Haider MZ, Parveen S, Sajid MA (2014) Hydrogen peroxide modulates antioxidant system and nutrient relation in maize (Zea mays L.) under water-deficit conditions. Arch Agron Soil Sci 61:507–523. doi:10.1080/03650340.2014.938644

    Article  Google Scholar 

  8. Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Chang Biol 17:997–1012. doi:10.1111/j.1365-2486.2010.02262.x

    Article  Google Scholar 

  9. Barr H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    CAS  Article  PubMed  Google Scholar 

  11. Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367. doi:10.1007/s11104-005-5691-9

    CAS  Article  Google Scholar 

  12. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiol Biochem 72:1–20. doi:10.1016/j.plaphy.2013.05.009

    CAS  Article  PubMed  Google Scholar 

  13. Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol Trace Elem Res 136:355–363. doi:10.1007/s12011-009-8542-3

    CAS  Article  PubMed  Google Scholar 

  14. Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970. doi:10.1111/j.1365-3040.2004.01203.x

    CAS  Article  Google Scholar 

  15. Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101. doi:10.1093/jxb/32.1.93

    CAS  Article  Google Scholar 

  16. Dolferus R, Ji X, Richards R (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341. doi:10.1016/j.plantsci.2011.05.015

    CAS  Article  PubMed  Google Scholar 

  17. Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68. doi:10.1016/j.envexpbot.2012.09.002

    CAS  Article  Google Scholar 

  18. Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844. doi:10.1016/j.jplph.2007.06.006

    CAS  Article  PubMed  Google Scholar 

  19. Gallie DR (2013) l-Ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica (Cairo) 2013:795964. doi:10.1155/2013/795964

    Google Scholar 

  20. Gourdji SM, Mathews KL, Reynolds MP, Crossa J, Lobell DB (2013) An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc R Soc B Biol Sci 280:8. doi:10.1098/rspb.2012.2190

    Google Scholar 

  21. Hajiboland R, Amjad L (2007) Does antioxidant capacity of leaves play a role in growth response to selenium at different sulfur nutritional status? Plant Soil Environ 53:207–215

    CAS  Google Scholar 

  22. Hammad SAR, Ali OAM (2014) Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann Agric Sci 59:133–145. doi:10.1016/j.aoas.2014.06.018

    Google Scholar 

  23. Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200. doi:10.1023/A:1026512921026

    CAS  Article  Google Scholar 

  24. Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776. doi:10.1007/s12011-011-8998-9

    CAS  Article  PubMed  Google Scholar 

  25. Hu K, Zhang L, Wang J, You Y (2013a) Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Soc Bot Pol 82:193–197. doi:10.5586/asbp.2013.023

    CAS  Article  Google Scholar 

  26. Hu X, Li T, Wang J, Wang Y, Baskin CC, Baskin JM (2013b) Seed dormancy in four Tibetan Plateau Vicia species and characterization of physiological changes in response of seeds to environmental factors. Seed Sci Res 23:133–140. doi:10.1017/S0960258513000019

    Article  Google Scholar 

  27. Huseynova IM, Rustamova SM, Suleymanov SY, Aliyeva DR, Mammadov AC, Aliyev JA (2016) Drought-induced changes in photosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties. Photosynth Res. doi:10.1007/s11120-016-0244-z

    Google Scholar 

  28. Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85. doi:10.1016/j.envexpbot.2010.06.002

    CAS  Article  Google Scholar 

  29. Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem PPB/Société Fr Physiol végétale 94:95–103. doi:10.1016/j.plaphy.2015.05.012

    CAS  Article  Google Scholar 

  30. Khattab H (2004) Metabolic and oxidative responses associated with exposure of Eruca sativa (Rocket) plants to different levels of selenium. Int J Agric Biol 6:1101–1106

    CAS  Google Scholar 

  31. Kubo A, Aono M, Nakajima N, Saji H, Tanaka K, Kondo N (1999) Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana. J Plant Res 112:279–290. doi:10.1007/PL00013884

    CAS  Article  Google Scholar 

  32. Kuznetsov VV, Kholodova VP, Kuznetsov VV, Yagodin BA (2003) Selenium regulates the water status of plants exposed to drought. Dokl Biol Sci 390:266–268. doi:10.1023/A:1024426104894

    CAS  Article  PubMed  Google Scholar 

  33. Latif M, Akram NA, Ashraf M (2016) Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid. J Hortic Sci Biotechnol 91:129–137. doi:10.1080/14620316.2015.1117226

    CAS  Article  Google Scholar 

  34. Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80. doi:10.1007/s11104-008-9818-7

    CAS  Article  Google Scholar 

  35. Malik JA, Kumar S, Thakur P, Sharma S, Kaur N, Kaur R, Pathania D, Bhandhari K, Kaushal N, Singh K, Srivastava A, Nayyar H (2011) Promotion of growth in mungbean (Phaseolus aureus Roxb.) by selenium is associated with stimulation of carbohydrate metabolism. Biol Trace Elem Res 143:530–539. doi:10.1007/s12011-010-8872-1

    CAS  Article  PubMed  Google Scholar 

  36. Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170. doi:10.1111/j.1399-3054.1983.tb04162.x

    CAS  Article  Google Scholar 

  37. Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ (2015a) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Saf 113:191–200. doi:10.1016/j.ecoenv.2014.12.003

    CAS  Article  PubMed  Google Scholar 

  38. Nawaz F, Ashraf MY, Ahmad R, Waraich EA, Shabbir RN, Bukhari MA (2015b) Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem 175:350–357. doi:10.1016/j.foodchem.2014.11.147

    CAS  Article  PubMed  Google Scholar 

  39. Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Iván Ortiz-Monasterio J, Reynolds M (2008) Climate change: can wheat beat the heat? Agric Ecosyst Environ 126:46–58. doi:10.1016/j.agee.2008.01.019

    Article  Google Scholar 

  40. Osman HS (2015) Enhancing antioxidant–yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Ann Agric Sci 60:389–402. doi:10.1016/j.aoas.2015.10.004

    Google Scholar 

  41. Pennanen A, Xue T, Hartikainen H (2002) Protective role of selenium in plant subjected to severe UV irradiation stress. J Appl Bot 76:66–76

    CAS  Google Scholar 

  42. Perveen S, Iqbal M, Nawaz A, Parveen A, Mahmood S (2016) Induction of drought tolerance in Zea mays L. by foliar application of triacontanol. Pakistan J Bot 48:907–915

    Google Scholar 

  43. Pilon-Smits EH, Souza MPD, Lytle CM, Shang C, Lugo T, Terry N (1998) Selenium volatilization and assimilation by hybrid poplar (Populus tremula × alba). J Exp Bot 49:1889–1892. doi:10.1093/jxb/49.328.1889

    CAS  Google Scholar 

  44. Pukacka S, Ratajczak E, Kalemba E (2011) The protective role of selenium in recalcitrant Acer saccharum L. seeds subjected to desiccation. J Plant Physiol 168:220–225. doi:10.1016/j.jplph.2010.07.021

    CAS  Article  PubMed  Google Scholar 

  45. Saffaryazdi A, Lahouti M, Ganjeali A, Bayat H (2012) Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Not Sci Biol 4:95–100

    CAS  Google Scholar 

  46. Sajedi N, Madani H, Naderi A (2011) Effect of microelements and selenium on superoxide dismutase enzyme, malondialdehyde activity and grain yield maize (Zea mays L.) under water deficit stress. Not Bot Horti Agrobot Cluj-Napoca 39:153–159

    CAS  Google Scholar 

  47. Samarah N, Alqudah A (2011) Effects of late-terminal drought stress on seed germination and vigor of barley (Hordeum vulgare L.). Arch Agron Soil Sci 57:27–32. doi:10.1080/03650340903191663

    Article  Google Scholar 

  48. Sams CE, Panthee DR, Charron CS, Kopsell DA, Yuan JS (2011) Selenium regulates gene expression for glucosinolate and carotenoid biosynthesis in Arabidopsis. J Amer Soc Hort Sci 136:23–34

    CAS  Google Scholar 

  49. Shah NH, Paulsen GM (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226. doi:10.1023/A:1026237816578

    CAS  Article  Google Scholar 

  50. Shao H, Chu L, Shao M, Jaleel CA, Hong-mei M (2008) Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biol 331:433–441

    CAS  Article  Google Scholar 

  51. Sieprawska A, Kornaś A, Filek M (2015) Involvement of selenium in protective mechanisms of plants under environmental stress conditions—review. Acta Biol Cracoviensia s Bot 57:9–20. doi:10.1515/abcsb-2015-0014

    Google Scholar 

  52. Su Z, Ma X, Guo H et al (2013) Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. Plant Cell 25:3785–3807. doi:10.1105/tpc.113.115428

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63:577–597

    CAS  Article  PubMed  Google Scholar 

  54. Tedeschini E, Proietti P, Timorato V, D’Amato R, Nasini L, Dei Buono D, Businelli D, Frenguelli G (2015) Selenium as stressor and antioxidant affects pollen performance in Olea europaea. Flora Morphol Distrib Funct Ecol Plants 215:16–22. doi:10.1016/j.flora.2015.05.009

    Article  Google Scholar 

  55. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66. doi:10.1016/S0168-9452(99)00197-1

    CAS  Article  Google Scholar 

  56. Wang CQ (2011) Water-stress mitigation by selenium in Trifolium repens L. J Plant Nutr Soil Sci 174:276–282. doi:10.1002/jpln.200900011

    CAS  Article  Google Scholar 

  57. Wolfe K, Wu X, Liu RH (2003) Antioxidant activity of apple peels. J Agric Food Chem 51:609–614. doi:10.1021/jf020782a

    CAS  Article  PubMed  Google Scholar 

  58. Xu J, Hu Q (2004) Effect of foliar application of selenium on the antioxidant activity of aqueous and ethanolic extracts of selenium-enriched rice. J Agric Food Chem 52:1759–1763. doi:10.1021/jf0349836

    CAS  Article  PubMed  Google Scholar 

  59. Yao X, Chu J, Wang G (2009) Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiol Plant 31:1031–1036. doi:10.1007/s11738-009-0322-3

    CAS  Article  Google Scholar 

  60. Yao X, Chu J, Ba C (2010) Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biol Trace Elem Res 136:96–105. doi:10.1007/s12011-009-8520-9

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research presented in this paper was partially supported by Higher Education Commission (HEC), Islamabad, Pakistan through Project Grant no. 20-1522/R&D/09.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Iqbal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Communicated by W. Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahzadi, I., Iqbal, M., Rasheed, R. et al. Foliar application of selenium increases fertility and grain yield in bread wheat under contrasting water availability regimes. Acta Physiol Plant 39, 173 (2017). https://doi.org/10.1007/s11738-017-2477-7

Download citation

Keywords

  • Antioxidative potential
  • Sodium selenate
  • Semi-arid environment
  • Sustainable agriculture
  • Wheat