Skip to main content
Log in

In silico study shows arsenic induces P1B ATPase gene family as cation transporter by abscisic acid signaling pathway in seedling of Sorghum bicolor

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Human exposure to arsenic has increased rapidly with the expansion of industrial activity and its toxicity raises concerns for public health. Arsenic remediation by plants is regarded as suitable avenue to a safer environment. Transporters facilitate remediation by transporting negative ions, but the contribution of cationic transporters to anionic remediation has not been fully studied. To determine which transporter is involved in anion and cation toxicity, the P1B ATPase gene family and arsenic and cadmium expression network relations were navigated using text mining software. The extracted pathways were tested and analyzed in silico and by gene expression detection. The results show that many putative pathways exist between arsenic and cadmium and P1B ATPases to stimulate expression or inhibition of this family. This study showed that arsenic stimulates expression of the P1B ATPase transporter through the abscisic acid signaling pathway. This cascade, as the end section of the arsenic stimulation pathway on P1B ATPase, was improved and investigated. The experimental results show that expression of P1B ATPase increased in response to arsenic exposure in Sorghum bicolor. The putative network contained abscisic acid- and glucose-related pathways for arsenic and ZIP8-related pathways for cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Ghany SE, Muller-Moule P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adle DJ, Lee J (2008) Expressional control of a cadmium-transporting P1B-type ATPase by a metal sensing degradation signal. J Biol Chem 283:31460–31468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arguello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195:93–108

    Article  CAS  PubMed  Google Scholar 

  • Arguello JM, Eren E, Gonzalez-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248

    Article  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  CAS  PubMed  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Binet MR, Poole RK (2000) Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. FEBS Lett 473:67–70

    Article  CAS  PubMed  Google Scholar 

  • Chin CS, Samanta MP (2003) Global snapshot of a protein interaction network-a percolation based approach. Bioinformatics 19:2413–2419

    Article  CAS  PubMed  Google Scholar 

  • Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S, Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, D’Eustachio P, Stein L (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39:D691–D697

    Article  CAS  PubMed  Google Scholar 

  • Du J, Yuan Z, Ma Z, Song J, Xie X, Chen Y (2014) KEGG-PATH: kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol BioSyst 10:2441–2447

    Article  CAS  PubMed  Google Scholar 

  • Eren E, Arguello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  CAS  PubMed  Google Scholar 

  • Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  CAS  PubMed  Google Scholar 

  • Han B, Yang Z, Xie Y, Nie L, Cui J, Shen W (2014) Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Mol Plant 7:388–403

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Chin CH, Wu HH, Chen SH, Ho CW, Ko MT (2008) Hubba: hub objects analyzer—a framework of interactome hubs identification for network biology. Nucleic Acids Res 36:W438–W443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood T, Gupta KJ, Kaiser WM (2009) Cadmium stress stimulates nitric oxide production by wheat roots. Pak J Bot 41(3):6

    Google Scholar 

  • Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M (2015) MOROKOSHI: transcriptome database in Sorghum bicolor. Plant Cell Physiol 56:e6

    Article  PubMed  Google Scholar 

  • Mana-Capelli S, Mandal AK, Arguello JM (2003) Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. J Biol Chem 278:40534–40541

    Article  CAS  PubMed  Google Scholar 

  • Mandal AK, Cheung WD, Arguello JM (2002) Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archaeoglobus fulgidus. J Biol Chem 277:7201–7208

    Article  CAS  PubMed  Google Scholar 

  • Mihara M, Itoh T, Izawa T (2010) SALAD database: a motif-based database of protein annotations for plant comparative genomics. Nucleic Acids Res 38:D835–D842

    Article  CAS  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambara E, Hayama R, Tsuchiya Y, Nishimura M, Kawaide H, Kamiya Y, Naito S (2000) The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Dev Biol 220:412–423

    Article  CAS  PubMed  Google Scholar 

  • Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio–the analysis and navigation of molecular networks. Bioinformatics 19:2155–2157

    Article  CAS  PubMed  Google Scholar 

  • Novichkova S, Egorov S, Daraselia N (2003) MedScan, a natural language processing engine for MEDLINE abstracts. Bioinformatics 19:1699–1706

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Okamura Y, Ito S, Tadaka S, Aoki Y, Shirota M, Kinoshita K (2014) ATTED-II in 2014: evaluation of gene coexpression in agriculturally important plants. Plant Cell Physiol 55:e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, ur Rahman M, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przulj N, Wigle DA, Jurisica I (2004) Functional topology in a network of protein interactions. Bioinformatics 20:340–348

    Article  CAS  PubMed  Google Scholar 

  • Raimunda D, Long JE, Sassetti CM, Arguello JM (2012) Role in metal homeostasis of CtpD, a Co(2)(+) transporting P(1B4)-ATPase of Mycobacterium smegmatis. Mol Microbiol 84:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Rosen BP (1999) Families of arsenic transporters. Trends Microbiol 7:207–212

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Luangtongkum T, Qiang Z, Jeon B, Wang L, Zhang Q (2014) Identification of a novel membrane transporter mediating resistance to organic arsenic in Campylobacter jejuni. Antimicrob Agents Chemother 58:2021–2029

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AT, Smith KP, Rosenzweig AC (2014) Diversity of the metal-transporting P1B-type ATPases. J Biol Inorg Chem 19:947–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soleymani Ali, Almodares Abas, Shahrajabian Mohamad Hesam (2012) Changes in seed yield and yield components of two cultivars of sweet sorghum in different plant populations. Int J Agric Crop Sci 4:4

    Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci USA 111:15699–15704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Mills RF (2005) P(1B)-ATPases–an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  CAS  PubMed  Google Scholar 

  • Yuryev A, Mulyukov Z, Kotelnikova E, Maslov S, Egorov S, Nikitin A, Daraselia N, Mazo I (2006) Automatic pathway building in biological association networks. BMC Bioinf 7:171

    Article  Google Scholar 

  • Zhuang P, Shu W, Li Z, Liao B, Li J, Shao J (2009) Removal of metals by sorghum plants from contaminated land. J Environ Sci (China) 21:1432–1437

    Article  CAS  Google Scholar 

  • Zielazinski EL, Gonzalez-Guerrero M, Subramanian P, Stemmler TL, Arguello JM, Rosenzweig AC (2013) Sinorhizobium meliloti Nia is a P(1B-5)-ATPase expressed in the nodule during plant symbiosis and is involved in Ni and Fe transport. Metallomics 5:1614–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Graduate Studies, the University of Isfahan, Isfahan, Iran. The authors wish to thank Mr. Naser Kalhor from Highly Specialized Jihad Daneshgahi Infertility Center, Stem Cell Laboratory, Qom Branch (ACECR), Qom, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ebrahimi.

Additional information

Communicated by K. Apostol.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darabi, S.A.S., Almodares, A. & Ebrahimi, M. In silico study shows arsenic induces P1B ATPase gene family as cation transporter by abscisic acid signaling pathway in seedling of Sorghum bicolor . Acta Physiol Plant 39, 172 (2017). https://doi.org/10.1007/s11738-017-2472-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2472-z

Keywords

Navigation