Skip to main content
Log in

Glutathione and citric acid modulates lead- and arsenic-induced phytotoxicity and genotoxicity responses in two cultivars of Solanum lycopersicum L.

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This study was conducted through the pot experiments to understand the mechanism of lead (Pb) and arsenic (As)-induced phytotoxicity and their possible alleviation by glutathione (GSH) and citric acid (CA) in two cultivars of Solanum lycopersicum L., i.e., Pusa ruby (PR) and Arka vikas (S22). Therefore, tomato seedlings were germinated in soil-rite supplemented with seven treatments, i.e., control, 10 µM Pb, 10 µM As, 10 µM Pb + 250 µM GSH, 10 µM As + 250 µM GSH, 10 µM Pb + 250 µM CA and 10 µM As + 250 µM CA for 7 days and examined for growth parameters, lipid peroxidation, photosynthetic pigments and antioxidative mechanism. Results of our study showed that Pb and As alone decrease seed germination, growth parameter, chlorophylls and increase anthocyanins and lipid peroxidation in both the cultivars. Pb- and As-induced oxidative stress resulted into significant changes in the plant responses that attributed by increased activity of antioxidative enzymes and non-enzymatic antioxidants. GSH and CA showed potential to alleviate Pb- or As-induced phytotoxicity and strengthen the plant antioxidative machinery and structural integrity. Cultivar PR showed better response than cv. S22. Pb and As treatment caused significant damages to the DNA molecules and structural integrity of the cv. PR roots. These findings can be useful for understanding the Pb- and As-induced phytotoxic biomarkers along with GSH- and CA-mediated alleviation mechanisms, which will provide new insight in developing better system for phytoremediation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

As:

Arsenic

CAT:

Catalase

cv.:

Cultivar

GR:

Glutathione reductase

GSSG:

Glutathione oxidized form

GSH:

Glutathione reduced form

HM:

Heavy metals

Pb:

Lead

PCs:

Phytochelatins

POD:

Peroxidase

PR:

Pusa ruby

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SEM:

Scanning electron microscope

S22:

Arka vikas

TCA:

Tricarboxylic acid

TBA:

Thiobarbituric acid

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Anonymous-ATSDR (2011) Detailed data table for the 2011 priority list of hazardous substance. Agency for Toxic Substances and Disease Registry. Division of Toxicology and Environmental Medicine, Atlanta

  • Antonkiewicz J, Para A (2016) The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals. Int J Phytoremed 18(3):245–250

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Ployphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai XY, Dong YJ, Wang QH, Xu LL, Kong J, Liu S (2015) Effects of lead and nitric oxide on photosynthesis, antioxidative ability, and mineral element content of perennial ryegrass. Biol Plant 59(1):163–170

    Article  CAS  Google Scholar 

  • Cai Y, Cao F, Wei K, Zhang G, Wu F (2011) Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings. J Hazard Mater 192(3):1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Saha R, Pal P (2016) Arsenic uptake and accumulation in okra (Abelmoschus esculentus) as affected by different arsenical speciation. Bull Environ Contam Toxicol 96(3):395–400

    Article  CAS  PubMed  Google Scholar 

  • Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50(6):807–811

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48(8):663–672

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Chang Q, Liu J, Clevers JGPW, Kooistra L (2016) Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: a case study in northwest China. Sci Total Environ 565:155–164

    Article  CAS  PubMed  Google Scholar 

  • Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31(2):244–257

    CAS  PubMed  Google Scholar 

  • Dai L-P, Xiong Z-T, Huang Y, Li M-J (2006) Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environ Toxicol 21(5):505–512

    Article  CAS  PubMed  Google Scholar 

  • Dikilitas M, Karakas S, Ahmad P (2016) Chapter 3—effect of lead on plant and human DNA damages and its impact on the environment. In: Ahmad P (ed) Plant Metal Interaction. Elsevier, pp 41–67

  • Eun S-O, Shik Youn H, Lee Y (2000) Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110(3):357–365

    Article  CAS  Google Scholar 

  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127(3):918–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas EV, Nascimento CW, Souza A, Silva FB (2013) Citric acid-assisted phytoextraction of lead: a field experiment. Chemosphere 92(2):213–217

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181(1–3):771–777

    Article  CAS  PubMed  Google Scholar 

  • Gichner T, Patková Z, Száková J, Demnerová K (2006) Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals. Ecotoxicol Environ Saf 65(3):420–426

    Article  CAS  PubMed  Google Scholar 

  • Giovanelli G, Paradiso A (2002) Stability of dried and intermediate moisture tomato pulp during storage. J Agric Food Chem 50(25):7277–7281

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Romero M, Segura-Carretero A, Fernández-Gutiérrez A (2010) Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry 71(16):1848–1864

    Article  PubMed  Google Scholar 

  • Goupil P, Souguir D, Ferjani E, Faure O, Hitmi A, Ledoigt G (2009) Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. J Plant Physiol 166(13):1446–1452

    Article  CAS  PubMed  Google Scholar 

  • Gratão PL, Monteiro CC, Rossi ML, Martinelli AP, Peres LEP, Medici LO, Lea PJ, Azevedo RA (2009) Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ Exp Bot 67(2):387–394

    Article  Google Scholar 

  • Han Y-L, Huang S-Z, Yuan H-Y, Zhao J-Z, Gu J-G (2013) Organic acids on the growth, anatomical structure, biochemical parameters and heavy metal accumulation of Iris lactea var. chinensis seedling growing in Pb mine tailings. Ecotoxicology 22(6):1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22(3):584–596

    Article  CAS  PubMed  Google Scholar 

  • Hattab S, Hattab S, Flores-Casseres ML, Boussetta H, Doumas P, Hernandez LE, Banni M (2016) Characterisation of lead-induced stress molecular biomarkers in Medicago sativa plants. Environ Exp Bot 123:1–12

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: II. Role of electron transfer. Arch Biochem Biophys 125(3):850–857

    Article  CAS  PubMed  Google Scholar 

  • Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signaling: Perspectives in plants under arsenic stress. Ecotoxicol Environ Saf 114:126–133

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42(11):1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Kopittke PM, Blamey FPC, Menzies NW (2008) Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant Soil 303(1):217–227

    Article  CAS  Google Scholar 

  • Kumar A, Majeti NVP (2014) Proteomic responses to lead-induced oxidative stress in Talinum triangulare Jacq. (Willd.) roots: identification of key biomarkers related to glutathione metabolisms. Environ Sci Pollut Res 21(14):8750–8764

    Article  CAS  Google Scholar 

  • Kumar A, Prasad MNV, Sytar O (2012) Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 89(9):1056–1065

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Prasad MNV, Mohan Murali Achary V, Panda BB (2013) Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environ Sci Pollut Res 20(7):4551–4561

    Article  CAS  Google Scholar 

  • Li H, Liu Y, Zeng G, Zhou L, Wang X, Wang Y, Wang C, Hu X, Xu W (2014) Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) Gaud. in the presence of exogenous citric and oxalic acids. J Environ Sci 26(12):2508–2516

    Article  Google Scholar 

  • Lowry O, Rosbrough N, Farr A, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Mahdavian K, Ghaderian SM, Torkzadeh-Mahani M (2017) Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. J Soils Sediments 17(5):1310–1320

    Article  CAS  Google Scholar 

  • Mendoza-Carranza M, Sepúlveda-Lozada A, Dias-Ferreira C, Geissen V (2016) Distribution and bioconcentration of heavy metals in a tropical aquatic food web: a case study of a tropical estuarine lagoon in SE Mexico. Environ Pollut 210:155–165

    Article  CAS  PubMed  Google Scholar 

  • Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL, Chu CC, Ling HQ, Rosen BP, Zhu YG (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191(1):49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86(2):205–215

    Article  CAS  PubMed  Google Scholar 

  • Miteva E, Merakchiyska M (2002) Response of chloroplasts and photosynthetic mechanism of bean plants to excess arsenic in soil. Bulg J Agric Sci 8:151–156

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Moore M, Gossmann N, Dietz K-J (2016) Redox regulation of cytosolic translation in plants. Trends Plant Sci 21(5):388–397

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay M, Das A, Subba P, Bantawa P, Sarkar B, Ghosh P, Mondal TK (2012) Structural, physiological, and biochemical profiling of tea plantlets under zinc stress. Biol Plant 57(3):474–480

    Article  Google Scholar 

  • Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162(7):743–748

    Article  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Qiu B, Zeng F, Cai S, Wu X, Haider SI, Wu F, Zhang G (2013) Alleviation of chromium toxicity in rice seedlings by applying exogenous glutathione. J Plant Physiol 170(8):772–779

    Article  CAS  PubMed  Google Scholar 

  • Rezaitabar S, Esmaili-Sari A, Bahramifar N (2012) Potential health risk of total arsenic from consumption of farm rice (Oryza sativa) from the Southern Caspian Sea Littoral and from imported rice in Iran. Bull Environ Contam Toxicol 88(4):614–616

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Loria CC, Favela-Torres E, González-Márquez H, Volke-Sepúlveda TL (2014) Role of glutathione and glutathione S-transferase in lead tolerance and bioaccumulation by Dodonaea viscosa (L.) Jacq. Acta Physiol Planta 36(9):2501–2510

    Article  CAS  Google Scholar 

  • Roldán-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res Rev Mutat Res 681(2–3):169–179

    Article  Google Scholar 

  • Roy R, Agrawal V, Gupta SC (2009) Comparison of drought-induced polypeptides and ion leakage in three tomato cultivars. Biol Plant 53(4):685–690

    Article  CAS  Google Scholar 

  • Roy R, Agrawal V, Gupta SC (2011) Mannitol, polyethylene glycol and NaCl induced polypeptide changes during in vitro culture of three tomato cultivars. Biol Plant 55(3):591–595

    Article  CAS  Google Scholar 

  • Shaheen N, Irfan NM, Khan IN, Islam S, Islam MS, Ahmed MK (2016) Presence of heavy metals in fruits and vegetables: health risk implications in Bangladesh. Chemosphere 152:431–438

    Article  CAS  PubMed  Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Aslam Bharwana S, Hasan Abbasi G (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    Article  PubMed  Google Scholar 

  • Sharma R, Bhardwaj R, Handa N, Gautam V, Kohli SK, Bali S, Kaur P, Thukral AK, Arora S, Ohri P, Vig AP (2016) Chapter 10—responses of phytochelatins and metallothioneins in alleviation of heavy metal stress in plants: an overview. In: Ahmad P (ed) Plant Metal Interaction. Elsevier, pp 263–283

  • Siddiqui F, Krishna SK, Tandon PK, Srivastava S (2013) Arsenic accumulation in Ocimum spp. and its effect on growth and oil constituents. Acta Physiol Planta 35(4):1071–1079

    Article  CAS  Google Scholar 

  • Singh J, Sastry EVD, Singh V (2012) Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiol Mol Biol Plants Int J Funct Plant Biol 18(1):45–50

    Article  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015) Investigating the roles of ascorbate–glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. Protoplasma 252(5):1217–1229

    Article  CAS  PubMed  Google Scholar 

  • Son JA, Narayanankutty DP, Roh KS (2014) Influence of exogenous application of glutathione on rubisco and rubisco activase in heavy metal-stressed tobacco plant grown in vitro. Saudi J Biol Sci 21(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Stoeva N, Berova M, Zlatev Z (2003) Physiological response of maize to arsenic contamination. Biol Plant 47(3):449–452

    Article  CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Planta 35(4):985–999

    Article  CAS  Google Scholar 

  • Szymańska R, Kruk J (2008) Tocopherol content and isomers’ composition in selected plant species. Plant Physiol Biochem 46(1):29–33

    Article  PubMed  Google Scholar 

  • Thakur S, Singh L, Zularisam AW, Sakinah M, Din MFM (2016) Lead induced oxidative stress and alteration in the activities of antioxidative enzymes in rice shoots. Biol Plant. doi:10.1007/s10535-016-0680-9

    Google Scholar 

  • Wang C, Gu X, Wang X, Guo H, Geng J, Yu H, Sun J (2011) Stress response and potential biomarkers in spinach (Spinacia oleracea L.) seedlings exposed to soil lead. Ecotoxicol Environ Saf 74(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen J, Yan X, Wang X, Zhang J, Huang J, Zhao J (2015) Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound-assisted citric acid. J Ind Eng Chem 27:368–372

    Article  Google Scholar 

  • Yang M, Xiao X-Y, Miao X-F, Guo Z-H, Wang F-Y (2012) Effect of amendments on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic, cadmium and lead. Trans Nonferrous Met Soc China 22(6):1462–1469

    Article  CAS  Google Scholar 

  • Zhu G, Guo Q, Xiao H, Chen T, Yang J (2017) Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing capital iron and steel factory. Environ Sci Pollut Res 24:14877–14888

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AK gratefully acknowledges Dr. D.S. Kothari Postdoctoral Fellowship [Grant No. F.4-2/2006 (BSR)/13-1058/2013 (BSR)] through University Grant Commission, New Delhi, India for financial assistance. This study is part of the M.Phil. thesis of LP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Agrawal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by N. A. Anjum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Pal, L. & Agrawal, V. Glutathione and citric acid modulates lead- and arsenic-induced phytotoxicity and genotoxicity responses in two cultivars of Solanum lycopersicum L.. Acta Physiol Plant 39, 151 (2017). https://doi.org/10.1007/s11738-017-2448-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2448-z

Keywords

Navigation