Does exogenous application of ascorbic acid modulate growth, photosynthetic pigments and oxidative defense in okra (Abelmoschus esculentus (L.) Moench) under lead stress?

  • Iqbal HussainEmail author
  • Asif Siddique
  • Muhammad Arslan Ashraf
  • Rizwan Rasheed
  • Muhammad Ibrahim
  • Muhammad Iqbal
  • Sobia Akbar
  • Muhammad Imran
Original Article


Seed priming increases tolerance of plants against various environmental stresses. Although ample literature is available that depicts the beneficial effects of priming under different environmental stresses, the information on induction of tolerance to Pb stress through seed priming with ascorbic acid (AsA) is limited. Therefore, this study was performed to examine the effect of seed priming with AsA (50 and 100 mg L−1), hydropriming and without priming (control) on physiochemical processes of okra cultivars (Subz-Pari and Arka Anamika) under Pb stress (0, 100 mg L−1). Pb stress caused a considerable decline in plant growth and photosynthetic pigments. Contrarily, Pb stress exhibited rise in the contents of total amino acids, free proline, total soluble proteins and AsA. The POD, CAT, and SOD activities were recorded highest at 100 mg L−1 of Pb. Moreover, Pb stress markedly increased H2O2 and MDA levels that triggered oxidative stress. However, plants raised from seed primed with AsA and water exhibited better growth and had higher chlorophylls, free proline, total proteins, total amino acids, AsA and activities of enzymatic antioxidants. Priming with AsA (50 mg L−1) induced better tolerance to Pb stress in okra plants. Plants of cv. Arka Anamika exhibited greater tolerance to Pb than that of cv. Subz-Pari as was evident from higher plant fresh and dry masses.


Antioxidant enzymes Chlorophyll pigments Growth Ascorbic acid Metals Lipid peroxidation Okra 



This study was partly supported by the Grants from the Punjab Higher Education Commission (PHEC), Lahore, Pakistan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agrawal SB, Singh A, Sharma RK, Agrawal M (2007) Bioaccumulation of heavy metal in leafy vegetables: a threat to human health. Terr Aquat Environ Toxicol 1(2):13–23Google Scholar
  2. Akinyele BO, Temikotan T (2007) Effect of variation in soil texture on the vegetative and pod characteristics of okra (Abelmoschus esculentus (L.) Moench). Intr J Agric Res 2:165–169CrossRefGoogle Scholar
  3. Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid—a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613. doi: 10.3389/fpls.2017.00613 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Al Jassir MS, Shaker A, Khaliq MA (2005) Deposition of heavy metals on green leafy vegetables sold on roadsides of Riyadh city, Saudi Arabia. Bull Environ Contam Toxicol 75(5):1020–1027. doi: 10.1007/s00128-005-0851-4 CrossRefPubMedGoogle Scholar
  5. Ali B, Mwamba TM, Gill RA, Yang C, Ali S, Daud MK, Wu Y, Zhou W (2014) Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regul 74(3):261–273. doi: 10.1007/s10725-014-9917-9 CrossRefGoogle Scholar
  6. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341. doi: 10.1093/jexbot/53.372.1331 CrossRefPubMedGoogle Scholar
  7. Anwar F, Rashid U, Ashraf M, Nadeem M (2010) Okra (Hibiscus esculentus) seed oil for biodiesel production. Appl Energ 87(3):779–785. doi: 10.1016/j.apenergy.2009.09.020 CrossRefGoogle Scholar
  8. Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216. doi: 10.1016/j.envexpbot.2005.12.006 CrossRefGoogle Scholar
  9. Ashraf MA, Ashraf M, Shahbaz M (2012) Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora 207(5):388–397. doi: 10.1016/j.flora.2012.03.004 CrossRefGoogle Scholar
  10. Athar HUR, Khan A, Ashraf M (2009) Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J Plant Nutr 32(11):1799–1817. doi: 10.1080/01904160903242334 CrossRefGoogle Scholar
  11. Avci H (2013) Heavy metals in vegetables irrigated with wastewaters in Gaziantep, Turkey: a review of causes and potential for human health risks. Fresenius Environ Bull 22(1):146–151Google Scholar
  12. Azmat R, Akhtar H (2010) Changes in some biophysical and biochemical parameters of mungbean [Vigna radiata (L.) wilczek] grown on chromium-contaminated soils treated with solid tea wastage. Pak J Bot 42(5):3065–3071Google Scholar
  13. Azmat R, Khan N (2011) Nitrogen metabolism as a bioindicator of Cu stress in Vigna radiata. Pak J Bot 43(1):515–520Google Scholar
  14. Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57(8):1657–1665. doi: 10.1093/jxb/erj198 CrossRefPubMedGoogle Scholar
  15. Bates IS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. doi: 10.1007/BF00018060 CrossRefGoogle Scholar
  16. Bhardwaj P, Chaturvedi AK, Prasad P (2009) Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris, L. Nat Sci 7(8):63–75Google Scholar
  17. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19. doi: 10.1097/WOX.0b013e3182439613 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Ann Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  19. Bybordi A (2012) Effect of AsA and siliciun on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. J Integr Agric 11(10):1610–1620. doi: 10.1016/S2095-3119(12)60164-6 CrossRefGoogle Scholar
  20. Cakmark I, Strboe D, Marschner H (1993) Activities of hydrogen peroxide scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132. doi: 10.1093/jxb/44.1.127 CrossRefGoogle Scholar
  21. Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubis J et al (2012) Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Biol 182:49–58. doi: 10.1016/j.plantsci.2011.01.016 Google Scholar
  22. Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and Biochemistry of Plant Pigments. Academic Press, London, pp 138–165Google Scholar
  23. Dilruba S, Hasanuzzaman M, Karim R, Nahar K (2009) Yield response of okra to different sowing time and application of growth hormones. J Hortic Sci Ornam Plants 1(1):10–14Google Scholar
  24. Dolatabadian A, Modarres Sanavy SAM, Sharifi M (2009) Alleviation of water deficit stress effects by foliar application of AsA on Zea mays L. J Agron Crop Sci 195(5):347–355. doi: 10.1111/j.1439-037X.2009.00382.x CrossRefGoogle Scholar
  25. Ebrahimian E, Bybordi A (2012) Influence of ascorbic acid foliar application on chlorophyll, flavonoids, anthocyanin and soluble sugar contents of sunflower under conditions of water deficit stress. J Food Agric Environ 10:1026–1030Google Scholar
  26. Gallie DR (2013) l-ascorbic acid: a multifunctional molecule supporting plant growth and development. Sci (Cairo) 2013:795964. doi: 10.1155/2013/795964 Google Scholar
  27. Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2014) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. In: Heavy metals, in water: presence, removal and safety, pp 1–24. doi: 10.1039/9781782620174-00001
  28. Gemede HF, Ratta N, Haki GD, Woldegiorgis AZ, Beyene F (2015) Nutritional quality and health benefits of okra (Abelmoschus esculentus): a review. Food Process Technol 6(6):458. doi: 10.4172/2157-7110.1000458 Google Scholar
  29. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930. doi: 10.1016/j.plaphy.2010.08.016 CrossRefPubMedGoogle Scholar
  30. Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321. doi: 10.1016/j.plantsci.2005.02.023 CrossRefGoogle Scholar
  31. Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70(9):1539–1544. doi: 10.1016/j.chemosphere.2007.08.043 CrossRefPubMedGoogle Scholar
  32. Green M, Prof SF (2005) Apoplastic degradation of ascorbate: novel enzymes and metabolites permeating the plant cell wall. Plant Biosyst 139:2–7. doi: 10.1080/11263500500056849 CrossRefGoogle Scholar
  33. Gul H, Ahmad R, Hamayun M (2015) Impact of exogenously applied AsA on growth, some biochemical constituents and ionic composition of guar (Cymopsis Tetragonoloba) subjected to salinity stress. Pakhtunkhwa J Life Sci 3(01–02):22–40Google Scholar
  34. Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172(1):479–484. doi: 10.1016/j.jhazmat.2009.06.14 CrossRefPubMedGoogle Scholar
  35. Haider S, Kanwal S, Uddin F, Azmat R (2006) Phytotoxicity of Pb II. Changes in chlorophyll absorption spectrum due to toxic metal Pb stress on Phaseolus mungo and Lens culinaris. Pak J Biol Sci 9(11):2062–2068CrossRefGoogle Scholar
  36. Hamid N, Bukhari N, Jawaid F (2010) Physiological responses of Phaseolus vulgaris to different lead concentrations. Pak J Bot 42(1):239–246Google Scholar
  37. Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA (2015) Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants 7:plv004. doi: 10.1093/aobpla/plv004 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hamilton PB, Van Slyke DD (1973) Amino acid determination and metal accumulation by Brassica juncea L. Int J Plant Prod 3(1):1735–8043Google Scholar
  39. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466. doi: 10.4161/psb.21949 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hemavathi Upadhyaya CP, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330. doi: 10.1007/s10529-009-0140-0 CrossRefPubMedGoogle Scholar
  41. Hodges DM, Nozzolillo C (1996) Anthocyanin and anthocyanoplast content of cruciferous seedlings subjected to mineral nutrient deficiencies. J Plant Physiol 147(6):749–754. doi: 10.1016/S0176-1617(11)81488-4 CrossRefGoogle Scholar
  42. Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611. doi: 10.1007/s004250050524 CrossRefGoogle Scholar
  43. Ip CCM, Li XD, Zhang G, Wong CSC, Zhang WL (2005) Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China. Environ Pollut 138(3):494–504. doi: 10.1016/j.envpol.2005.04.016 CrossRefPubMedGoogle Scholar
  44. Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem 94:95–103CrossRefPubMedGoogle Scholar
  45. Islam E, Liu D, Li TQ, Yang X, Jin XF, Mahmooda Q, Tian S, Li JY (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154(1):914–926. doi: 10.1016/j.jhazmat.2007.10.121 CrossRefPubMedGoogle Scholar
  46. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182. doi: 10.1093/bmb/ldg032 CrossRefPubMedGoogle Scholar
  47. Khan T, Mazid M, Mohammad F (2011) A review of ascorbic acid potentialities against oxidative stress induced in plants. J Agrobiol 28(2):97–111. doi: 10.2478/v10146-011-0011-x CrossRefGoogle Scholar
  48. Khan I, Iqbal M, Ashraf MY, Ashraf MA, Ali S (2016) Organic chelants-mediated enhanced lead (Pb) uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinacea oleracea L.). J Hazard Mater 317:352–361CrossRefPubMedGoogle Scholar
  49. Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137(1):19–32. doi: 10.1016/j.geothermal.2006.08.024 CrossRefGoogle Scholar
  50. Kitamura Y, Ohta M, Ikenaga T, Watanabe M (2002) Responses of anthocyanin-producing and non-producing cells of Glehnia littoralis to radical generators. Phytochemistry 59(1):63–68. doi: 10.1016/S0031-9422(01)00428-9 CrossRefPubMedGoogle Scholar
  51. Kostopoulou Z, Therios I, Roumeliotis E, Kanellis AK, Molassiotis A (2015) Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol Biochem 86:155–165. doi: 10.1016/j.plaphy.2014.11.021 CrossRefPubMedGoogle Scholar
  52. Krivosheeva A, Tao DL, Ottander C, Wingsle G, Dube SL, Oquist G (1996) Cold acclimation and photoinhibition of photosynthesis in Scots pine. Planta 200:296–305. doi: 10.1007/BF00200296 CrossRefGoogle Scholar
  53. Kumar A, Prasad MNV (2015) Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica 53(1):66–71. doi: 10.1007/s11099-015-0091-8 CrossRefGoogle Scholar
  54. Kumar A, Prasad MNV, Sytar O (2012) Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 89(9):1056–1065. doi: 10.1016/j.chemosphere.2012.05.070 CrossRefPubMedGoogle Scholar
  55. Lamhamdi M, El Galiou O, Bakrim A, Nóvoa-Muñoz JC, Arias-Estevez M, Aarab A, Lafont R (2013) Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biol Sci 20(1):29–36. doi: 10.1016/j.sjbs.2012.09.001 CrossRefPubMedGoogle Scholar
  56. Lasat MM (2002) Phytoextraction of toxic metals—a review of biological mechanisms. J Environ Qual 31:109–120. doi: 10.2134/jeq2002.1090 CrossRefPubMedGoogle Scholar
  57. Li Y, Song Y, Shi G, Wang J, Hou X (2009) Response of antioxidant activity to excess copper in two cultivars of Brassica campestris spp. chinensis Makino. Acta Physiol Plant 31:155–162. doi: 10.1007/s11738-008-0216-9 CrossRefGoogle Scholar
  58. Mahmood S, Parveen A, Hussain I, Javed S, Iqbal M (2014) Possible involvement of secondary metabolites in the thermotolerance of maize seedlings. Int J Agric Biol 16:1075–1082Google Scholar
  59. Mishra S, Srivastava S, Tripathi R, Kumar R, Seth C, Gupta D (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039. doi: 10.1016/j.chemosphere.2006.03.033 CrossRefPubMedGoogle Scholar
  60. Morelli E, Scarano G (2001) Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum. Mar Environ Res 52(4):383–395. doi: 10.1016/S0141-1136(01)00093-9 CrossRefPubMedGoogle Scholar
  61. Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous AsA and hydrogen peroxide in Vigna seedlings. Physiol Plant 58(2):166–170. doi: 10.1111/j.1399-3054.1983.tb04162.x CrossRefGoogle Scholar
  62. Ndunguru J, Rajabu AC (2004) Effect of okra mosaic virus diseases on the above- ground morphological yield components of okra in Tanzania. Sci Hortic 99:225–235. doi: 10.1016/S0304-4238(03)00108-0 CrossRefGoogle Scholar
  63. Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol 6(4):379–389. doi: 10.1016/S1369-5266(03)00069-4 CrossRefPubMedGoogle Scholar
  64. Piotrowska A, Bajguz A, Godlewska B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lamnaceae). Environ Exp Bot 66:507–513. doi: 10.1016/j.envexpbot.2009.03.019 CrossRefGoogle Scholar
  65. Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60(1):97–104. doi: 10.1016/j.chemosphere.2004.11.092 CrossRefPubMedGoogle Scholar
  66. Sahoo S, Mohanty S, Rout S, Kanungo S (2014) The effect of lead toxicity on growth and antioxidant enzyme expression of Abutilon indicum L. Int J Pharm Pharm Sci 7(2):134–138Google Scholar
  67. Schützendübel A, Nikolova P, Rudolf C, Polle A (2002) Cadmium and H2O2-induced oxidative stress in Populus × canescens roots. Plant Physiol Biochem 40:577–584. doi: 10.1016/S0981-9428(02)01411-0 CrossRefGoogle Scholar
  68. Sêkara A, Poniedzialeek M, Ciura J, Jedrszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Polish J Environ Stud 14(4):509–516Google Scholar
  69. Shahid MR, Amjad M, Ziaf K, Jahangir MM, Ahmad S, Iqbal Q, Nawaz A (2013) Growth, yield and seed production of okra as influenced by different growth regulators. Pak J Agric Sci 50(3):387–392Google Scholar
  70. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52. doi: 10.1590/S1677-04202005000100004 CrossRefGoogle Scholar
  71. Shu X, Yin L, Zhang Q, Wang W (2012) Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ Sci Pollut Res 19(3):893–902. doi: 10.1007/s11356-011-0625-y CrossRefGoogle Scholar
  72. Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48(2):611–619. doi: 10.1016/j.fct.2009.11.041 CrossRefPubMedGoogle Scholar
  73. Smirnoff N (2000) AsA: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3(3):229–235. doi: 10.1016/S1369-5266(00)80070-9 CrossRefPubMedGoogle Scholar
  74. Suzuki N, Koussevitzky S, Mittler RN, Miller GAD (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270. doi: 10.1111/j.1365-3040.2011.02336.x CrossRefPubMedGoogle Scholar
  75. Tanyolac D, Ekmekçi Y, Ünalan Ş (2007) Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67(1):89–98. doi: 10.1016/j.chemosphere.2006.09.052 CrossRefPubMedGoogle Scholar
  76. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective roles of exogenous polyamines. Plant Sci 151:59–66. doi: 10.1016/S0168-9452(99)00197-1 CrossRefGoogle Scholar
  77. Venkatesh J, Park SW (2014) Role of l-ascorbate in alleviating abiotic stresses. Bot Stud 55:38. doi: 10.1186/1999-3110-55-38 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655. doi: 10.1016/S0168-9452(03)00022-0 CrossRefGoogle Scholar
  79. Voskresenskaya OL, Voskresenskiy VS, Alyabysheva EA (2013) Accumulation of heavy metals in soil and plants in location gathering and temporary storage solid waste. Modern Problems Sci Edu. (in Russian)
  80. Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. IRRI, Los Banos, p 61Google Scholar
  81. Zhang Y (2013) AsA in plants: biosynthesis, regulation and enhancement. Springer Science & Business Media, New YorkGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2017

Authors and Affiliations

  1. 1.Department of BotanyGovernment College UniversityFaisalabadPakistan
  2. 2.Department of Environmental Life Sciences, Graduate School of Life SciencesTohoku UniversitySendaiJapan
  3. 3.Department of Applied Chemistry and BiochemistryGovernment College UniversityFaisalabadPakistan
  4. 4.Department of ChemistryGhazi UniversityDera Ghazi KhanPakistan

Personalised recommendations