Skip to main content

Advertisement

Log in

Induction of two cyclotide-like genes Zmcyc1 and Zmcyc5 by abiotic and biotic stresses in Zea mays

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cyclotides are small plant disulfide-rich and cyclic proteins with a diverse range of biological activities. Cyclotide-like genes show key sequence features of cyclotides and are present in the Poaceae. In this study the cDNA of the nine cyclotide-like genes were cloned and sequenced using 3′RACE from Zea mays. The gene expression of two of these genes (Zmcyc1 and Zmcyc5) were analyzed by real-time PCR in response to biotic (Fusarium graminearum, Ustilago maydis and Rhopalosiphum maydis) and abiotic (mechanical wounding, water deficit and salinity) stresses, as well as in response to salicylic acid and methyl jasmonate elicitors to mimic biotic stresses. All isolated genes showed significant similarity to other cyclotide-like genes and were classified in two separate clusters. Both Zmcyc1 and Zmcyc5 were expressed in all studied tissues with the highest expression in leaves and lowest expression in roots. Wounding, methyl jasmonate and salicylic acid significantly induced the expression of Zmcyc1 and Zmcyc5 genes, but the higher expression was observed for Zmcyc1 as compared with Zmcyc5. Expression levels of these two genes were also induced in inoculated leaves with F. graminearum, U. maydis and also in response to insect infestation. In addition, the 1000-base-pairs (bp) upstream of the promoter of Zmcyc1 and Zmcyc5 genes were identified and analyzed using the PlantCARE database and consequently a large number of similar biotic and abiotic cis-regulatory elements were identified for these two genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen MN, Asch F, Wu Y, Jensen CR, Næsted H, Mogensen VO, Koch KE (2002) Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiol 130:591–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry DG, Daly NL, Clark RJ, Sando L, Craik DJ (2003) Linearization of a naturally occurring circular protein maintains structure but eliminates hemolytic activity. Biochemistry 42:6688–6695

    Article  CAS  PubMed  Google Scholar 

  • Basse CW (2005) Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Plant Physiol 138:1774–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer JS, McLaughlin JE (2007) Functional reversion to identify controlling genes in multigenic responses: analysis of floral abortion. J Exp Bot 58:267–277

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ, Conibear AC (2011) The chemistry of cyclotides. J Org Chem 76:4805–4817

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Daly NL, Love S, Alewood PF, Craik DJ (1999) Chemical synthesis and folding pathways of large cyclic polypeptides: studies of the cystine knot polypeptide kalata B1. Biochemistry 38:10606–10614

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, Xue S, Jia H, Ma Z (2011) Resistance to hemi-biotrophic Fusarium graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One 6:e19008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer WH, Anagnostakis S (1991) Vegetative compatibility groups of Fusarium proliferation from Asparagus and comparisons of virulence, growth rates, and colonization of Asparagus residues among groups. Phytopathology 81:852–857

    Article  Google Scholar 

  • Gao L-L, Klingler JP, Anderson JP, Edwards OR, Singh KB (2008) Characterization of pea aphid resistance in Medicago truncatula. Plant Physiol 146:996–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottwald S, Samans B, Luck S, Friedt W (2012) Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat. BMC Genom 13:369

    Article  CAS  Google Scholar 

  • Gran L (1973) On the effect of a polypeptide isolated from “Kalata-Kalata”(Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol Tox 33:400–408

    Article  CAS  Google Scholar 

  • Gustafson KR, Sowder RC, Henderson LE, Parsons IC, Kashman Y, Cardellina JH, McMahon JB, Buckheit RW Jr, Pannell LK, Boyd MR (1994) Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J Am Chem Soc 116:9337–9338

    Article  CAS  Google Scholar 

  • Gruber CW, Cemazar M, Clark RJ, Horibe T, Renda RF, Anderson MA, Craik DJ (2007) A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. J Biol Chem 282:20435–20446

    Article  CAS  PubMed  Google Scholar 

  • Hernandez J-F, Gagnon J, Chiche L, Nguyen TM, Andrieu J-P, Heitz A, Trinh Hong T, Pham TTC, Le Nguyen D (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39:5722–5730

    Article  CAS  PubMed  Google Scholar 

  • Ireland DC, Colgrave ML, Nguyencong P, Daly NL, Craik DJ (2006) Discovery and characterization of a linear cyclotide from Viola odorata: implications for the processing of circular proteins. J Mol Biol 357:1522–1535

    Article  CAS  PubMed  Google Scholar 

  • Jennings C, West J, Waine C, Craik D, Anderson M (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Nat Acad Sci USA 98:10614–10619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katan T, Katan J, Gordon T, Pozniak D (1994) Physiologic races and vegetative compatibility groups of Fusarium oxysporum f. sp. melonis in Israel. Phytopathol New York Baltimore Then St Paul- 84:153

    Google Scholar 

  • Koehbach J, O’Brien M, Muttenthaler M, Miazzo M, Akcan M, Elliott AG, Daly NL, Harvey PJ, Arrowsmith S, Gunasekera S, Smith TJ (2013) Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design. Proc Natl Acad Sci USA 110:21183–21188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Yen Y (2008) Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Sci 48:1888–1896

    Article  Google Scholar 

  • Lindholm P, Göransson U, Johansson S, Claeson P, Gullbo J, Larsson R, Bohlin L, Backlund A (2002) Cyclotides: a novel type of cytotoxic agents. Mol Cancer Ther 1:365–369

    CAS  PubMed  Google Scholar 

  • Liu M, Yang Y, Zhang S, Tang L, Wang H, Chen C, Shen Z, Cheng K, Kong J, Wang W (2014) A cyclotide against influenza A H1N1 virus from Viola yedoensis. Yao Xue Xue Bao 49:905–912

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mylne JS, Wang CK, van der Weerden NL, Craik DJ (2010) Cyclotides are a component of the innate defense of Oldenlandia affinis. Peptide Sci 94:635–646

    Article  CAS  Google Scholar 

  • Mulvenna JP, Mylne JS, Bharathi R, Burton RA, Shirley NJ, Fincher GB, Anderson MA, Craik DJ (2006) Discovery of cyclotide-like protein sequences in graminaceous crop plants: ancestral precursors of circular proteins? Plant Cell 18:2134–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen GKT, Zhang S, Wang W, Wong CTT, Nguyen NTK, Tam JP (2011) Discovery of a linear cyclotide from the bracelet subfamily and its disulfide mapping by top-down mass spectrometry. J Biol Chem 286:44833–44844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen GKT, Lim WH, Nguyen PQT, Tam JP (2012) Novel cyclotides and uncyclotides with highly shortened precursors from Chassalia chartacea and effects of methionine oxidation on bioactivities. J Biol Chem 287:17598–17607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen GKT, Lian Y, Pang EWH, Nguyen PQT, Tran TD, Tam JP (2013) Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. J Biol Chem 288:3370–3380

    Article  CAS  PubMed  Google Scholar 

  • Ovesen RG, Nielsen J, Bruun Hansen HC (2011) Biomedicine in the environment: Sorption of the cyclotide kalata B2 to montmorillonite, goethite, and humic acid. Environ Toxicol Chem 30:1785–1792

    Article  CAS  PubMed  Google Scholar 

  • Plan MR, Rosengren KJ, Sando L, Daly NL, Craik DJ (2010) Structural and biochemical characteristics of the cyclotide kalata B5 from Oldenlandia affinis. Peptide Sci 94:647–658

    Article  CAS  Google Scholar 

  • Poth AG, Colgrave ML, Lyons RE, Daly NL, Craik DJ (2011) Discovery of an unusual biosynthetic origin for circular proteins in legumes. Proc Nat Acad Sci USA 108:10127–10132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poth AG, Mylne JS, Grassl J, Lyons RE, Millar AH, Colgrave ML, Craik DJ (2012) Cyclotides associate with leaf vasculature and are the products of a novel precursor in Petunia (Solanaceae). J Biol Chem 287:27033–27046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seydel P, Dornenburg H (2006) Establishment of in vitro plants, cell and tissue cultures from Oldenlandia affinis for the production of cyclic peptides. Plant Cell Tissue Org 85:247–255

    Article  Google Scholar 

  • Slazak B, Sliwinska E, Saługa M, Ronikier M, Bujak J, Słomka A, Goransson U, Kuta E (2015) Micropropagation of Viola uliginosa (Violaceae) for endangered species conservation and for somaclonal variation-enhanced cyclotide biosynthesis. Plant Cell Tissue Org 120:179–190

    Article  CAS  Google Scholar 

  • Tam JP, Lu Y-A, Yang J-L, Chiu K-W (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Nat Acad Sci USA 96:8913–8918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur R, Leonard K, Pataky J (1989) Smut gall development in adult corn plants inoculated with Ustilago maydis. Plant Dis 73:921–925

    Article  Google Scholar 

  • Trabi M, Craik DJ (2004) Tissue-specific expression of head-to-tail cyclized miniproteins in Violaceae and structure determination of the root cyclotide Viola hederacea root cyclotide1. Plant Cell 16:2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witherup KM, Bogusky MJ, Anderson PS, Ramjit H, Ransom RW, Wood T, Sardana M (1994) Cyclopsychotride A, a biologically active, 31-residue cyclic peptide isolated from Psychotria longipes. J Nat Prod 57:1619–1625

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Jin X, Jia X, Wang H, Cao A, Zhao W, Pei H, Xue Z, He L, Chen Q (2013) Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics 14:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamani M, Rahjoo V, Parchamian M (2011) Evaluation of the reaction of early maturing maize genotypes to common smut using artificial inoculation. Zbornik Matice Srpske Za Prirodne Nauke 121:71–77

    Article  Google Scholar 

  • Zarrabi M, Dalirfardouei R, Sepehrizade Z, Kermanshahi R (2013) Comparison of the antimicrobial effects of semipurified cyclotides from Iranian Viola odorata against some of plant and human pathogenic bacteria. J Appl Microbiol 115:367–375

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liao B, Craik DJ, Li J-T, Hu M, Shu W-S (2009) Identification of two suites of cyclotide precursor genes from metallophyte Viola baoshanensis: cDNA sequence variation, alternative RNA splicing and potential cyclotide diversity. Gene 431:23–32

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li J, Huang Z, Yang B, Zhang X, Li D, Craik DJ, Baker AJ, Shu W, Liao B (2015) Transcriptomic screening for cyclotides and other cysteine-rich proteins in the metallophyte Viola baoshanensis. J Plant Physiol 178:17–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the University of Kurdistan, Faculty of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahman Bahramnejad.

Additional information

Communicated by Q. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, H., Bahramnejad, B. & Majdi, M. Induction of two cyclotide-like genes Zmcyc1 and Zmcyc5 by abiotic and biotic stresses in Zea mays . Acta Physiol Plant 39, 131 (2017). https://doi.org/10.1007/s11738-017-2425-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2425-6

Keywords

Navigation